精英家教网 > 初中数学 > 题目详情
如图,分别以△ABC的边AB,AC向外作等边三角形ABD和等边三角形ACE,线段BE与CD相交于点O,连接OA.
(1)求证:BE=DC;
(2)求∠BOD的度数;
(3)求证:OA平分∠DOE.
分析:(1)根据等边三角形性质得出AB=AD,AE=AC,∠BAD=∠BDA=∠DBA=∠CAE=60°,求出∠BAE=∠DAC.根据SAS证△ABE≌△ADC即可.
(2)根据全等求出∠ADC=∠ABE,在△DOB中根据三角形的内角和定理和∠ADB=∠DBA=60°即可求出答案.
(3)过点A分别作AM⊥BE,AN⊥DC,垂足为点M,N.根据三角形的面积公式求出AN=AM,根据角平分线性质求出即可.
解答:(1)证明:∵△ABD和△ACE都是等边三角形,
∴AB=AD,AE=AC,∠BAD=∠BDA=∠DBA=∠CAE=60°,
∴∠BAC+∠CAE=∠BAC+∠BAD,
即∠BAE=∠DAC.
在△ABE和△ADC中
AB=AD
∠BAE=∠DAC
AE=AC

∴△ABE≌△ADC(SAS),
∴BE=DC.

(2)解:由(1)知:△ABE≌△ADC,
∴∠ADC=∠ABE
∴∠ADC+∠BDO=∠ABE+∠BDO=∠BDA=60°
∴在△BOD中,∠BOD=180°-∠BDO-∠DBA-∠ABE
=180°-∠DBA-(∠ADC+∠BDO)
=180°-60°-60°
=60°.

(3)证明:过点A分别作AM⊥BE,AN⊥DC,垂足为点M,N.
∵由(1)知:△ABE≌△ADC,
∴S△ABE=S△ADC
1
2
•BE•AM=
1
2
•DC•AN

∴AM=AN
∴点A在∠DOE的平分线上,
即OA平分∠DOE.
点评:本题考查了等边三角形性质,三角形的面积,全等三角形的性质和判定,三角形的内角和定理的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,分别以△ABC的三边为边在BC的同侧作三个等边三角形,即△ABD,△BCE,△ACF.请回答下列问题:
(1)说明四边形ADEF是什么四边形?
(2)当△ABC满足什么条件时,四边形ADEF是矩形?
(3)当△ABC满足什么条件时,四边形ADEF是菱形?
(4)当△ABC满足什么条件时,四边形ADEF是正方形?
(5)当△ABC满足什么条件时,以A,D,E,F为顶点的四边形不存在?
(第(2)(3)(4)(5)题不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,分别以△ABC的边AB、AC向外作等边△ABE和等边△ACD,求证:BD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,分别以△ABC的边AB、AC为边向外作等边三角形ABD和等边三角形ACE,CD与BE相交于点O,判断∠AOD与∠AOE的数量关系,并证明.

查看答案和解析>>

同步练习册答案