精英家教网 > 初中数学 > 题目详情

已知:如图,在△ABC中,AD⊥BC于点D,点E是AB边的中点.△ABC的面积为126,BC=21,AC=20.求:
(1)sinC的值;
(2)cot∠ADE的值.

解:(1)由条件得S△ABC=AD•BC,
∵BC=21,
∴126=AD×21,
∴AD=12,
∵AC=20,
∴sinC=

(2)在Rt△ADC中,
∵AC=20,AD=12,
∴CD=16,
∵BC=21,
∴BD=5,
在Rt△ADB中,
∵点E是边AB的中点,
∴ED=EA,
∴cot∠ADE=cot∠BAD==
分析:(1)根据△ABC的面积和BC的长度,即可推出AD的长度,再由AC的长度,根据锐角三角函数的定义即可推出思念C的值,(2)根据勾股定理求出CD和BD的长度,由E为AB的中点,即可求出EA=EB,然后推出cot∠ADE=cot∠BAD,再由cot∠BAD=,即可推出结论.
点评:本题主要考查锐角三角函数的定义,三角形的面积公式,勾股定理等知识点,关键在于正确的求出AD、CD、BD的长度,熟练的运用相关的性质定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案