【题目】如图,一个边长为4cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,则劣弧的长=_____.
科目:初中数学 来源: 题型:
【题目】图1是某浴室花洒实景图,图2是该花洒的侧面示意图.已知活动调节点B可以上下调整高度,离地面CD的距离BC=160cm.设花洒臂与墙面的夹角为α,可以扭动花洒臂调整角度,且花洒臂长AB=30cm.假设水柱AE垂直AB直线喷射,小华在离墙面距离CD=120cm处淋浴.
(1)当α=30°时,水柱正好落在小华的头顶上,求小华的身高DE.
(2)如果小华要洗脚,需要调整水柱AE,使点E与点D重合,调整的方式有两种:
①其他条件不变,只要把活动调节点B向下移动即可,移动的距离BF与小华的身高DE有什么数量关系?直接写出你的结论;
②活动调节点B不动,只要调整α的大小,在图3中,试求α的度数.
(参考数据:≈1.73,sin8.6°≈0.15,sin36.9°≈0.60,tan36.9°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为( )
A.8073B.8072C.8071D.8070
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系,乙种水果的销售利润(千元)与进货量x(吨)之间的函数关系近似于二次函数,函数图象如图所示.
(1)求出与x的函数关系式,并写出自变量x的取值范围;
(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时,获得的销售利润之和最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.
(1)求证:AB与⊙O相切;
(2)若等边三角形ABC的边长是4,求线段BF的长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.
(1)当每吨售价是240元时,计算此时的月销售量;
(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?
(3)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y1,y2分别是关于x的函数,如果函数y1和y2的图象有交点,那么称y1,y2为“亲密函数”,交点称为函数y1和y2的“亲密点”;若两函数图象有两个交点,横坐标分别是x1,x2,称L=|x1﹣x2|为函数y1和y2的“亲密度”,特别地,若两函数图象只有一个交点,则两函数的“亲密度”L=0.
(1)已知一次函数y1=2x﹣5与反比例函数y2=,请判断函数y1和y2是否为“亲密函数”,若是,请写出“亲密点”及“亲密度”L,若不是,请说明理由;
(2)已知二次函数y=ax2﹣6x+c与x轴只有一个交点,与一次函数y=x﹣1的“亲密度”L=3,求二次数的解析式;
(3)已知“亲密函数”y1=ax﹣2和y2=的“亲密度”L=0,“亲密点”为P(x0,y0),将过P的抛物线y=ax2+bx+c(b>0)进行平移,点P的对应点为P1(1﹣m,2b﹣1),平移后的抛物线仍经过点P,当m≥﹣时,求平移后抛物线的顶点所能达到的最高点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(定义[a,b,c]为函数的特征数,下面给出特征数为 [2m,1-m,-1-m]的函数的一些结论:
①当m=-3时,函数图象的顶点坐标是(,);
②当m>0时,函数图象截x轴所得的线段长度大于;
③当m<0时,函数在时,y随x的增大而减小;
④当m≠0时,函数图象经过x轴上一个定点.
其中正确的结论有________ .(只需填写序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以点O为圆心,OB为半径作圆,过点C作CD∥AB交⊙O于点D,连接BD.
(1)猜想AC与⊙O的位置关系,并证明你的猜想;
(2)试判断四边形BOCD的形状,并证明你的判断;
(3)已知AC=6,求扇形OBC所围成的圆锥的底面圆的半径r.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com