精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xoy中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n)。线段OA=5,E为x轴上一点,且.

(1)求该反比例函数和一次函数的解析式;

(2)求△AOC的面积;

(3)直接写出一次函数值大于反比例函数自变量x的取值范围。

【答案】(1) y=; y=;(2)6;(3) x<-3或0<x<6

【解析】试题分析:(1)过点A作AH⊥x轴于H点,由sin∠AOE=,OA=5,根据正弦的定义可求出AH,再根据勾股定理得到HO,即得到A点坐标(-3,4),把A(-3,4)代入y=,确定反比例函数的解析式;将B(6,n)代入,确定点B点坐标,然后把A点和B点坐标代入y=kx+b(k≠0),求出k和B即可;

(2)先令y=0,求出C点坐标,得到OC的长,然后根据三角形的面积公式计算△AOC的面积即可;

(3)观察图象可得当x<-3或0<x<6时,反比例函数图象都在一次函数图象的下方,即一次函数值大于反比例函数值.

试题解析:(1)过A作AH⊥x轴交x轴于H,

∵sin∠ACE==,OA=5,

∴AH=4,∴OH= =3,

∴A(-3,4),

将A(-3,4)代入y=,得m=-12,∴反比例函数的解析式为y=-

将B(6,n)代入y=- ,得n=-2,

∴B(6,-2),

将A(-3,4)和B(6,-2)分别代入y=kx+b(k≠0),得 ,解得

∴直线解析式:y=

(2)在直线y=中,令y=0,则有=0,解得x=3,

∴C(3,0),即OC=3,

(3)观察图象可得:当x<-3或0<x<6时,一次函数值大于反比例函数值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,点E.F分别在边AD、CD上,∠EBF=45°,则△EDF

的周长等于_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个反比例函数y=(k>1)和y=在第一象限内的图象如图所示,点P在y=的图象上,PCx轴于点C,交y=的图象于点A,PDy轴于点D,交y=的图象于点B,BEx轴于点E,当点P在y=图象上运动时,以下结论:BA与DC始终平行;PA与PB始终相等;四边形PAOB的面积不会发生变化;④△OBA的面积等于四边形ACEB的面积.其中一定正确的是_____(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】信息化时代的到来,手机已经成为我们生活中不可缺少的一部分.为了解中学生在假期使用手机的情况(选项:.聊天;.游戏.学习;.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出).

1)这次被调查的学生有多少人?被调查的学生中,用手机学习的有多少人?

2)将两个统计图补充完整;

3)在扇形统计图中,请计算本项调查中用手机学习部分所对应的圆心角的度数;

4)如果全校共1200名同学,请你估算用手机学习的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】越来越多的人在用微信付款、转账,把微信账户里的钱转到银行卡叫做提现。

20163l日起,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,累计提现金额超出1000元的部分需支付0.1%的手续费,以后每次提现支付的手续费为提现金额的0.1%.

1)小明在今天第1次进行了提现,金额为l600元,他需支付手续费_________元;

2)小亮自201631日至今,用自己的微信账户共提现3次,3次提现金额和手续费分别如下:

1

2

3

提现金额(元)

A

b

手续费(元)

0

0.4

3.4

问:小明3次提现金额各是多少元?

3)单笔手续费小于0.1元的,按照0.1元收取(即提现不足100元,按照100元收取手续费).小红至今共提现两次,每次提现金额都是整数,共支付手续费2.4元,第一次提现900元。求小红第二次提现金额的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】夏季来临,商场准备购进甲、乙两种空调,已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:

1)求甲、乙两种空调每台的进价;

2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场计划用不超过36000元购进空调共20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式,并求出所能获得的最大

利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下列材料:

问题:现有个边长为的正方形,排列形式如图,在图中画出分割线,拼出如图所示的新正方形.

请你参考.上述做法,解决如下问题:

1)现有个边长为的正方形,排列形式如图,请把它们分割后拼接成一个新的正方形,在图中画出分割线,并在图的正方形网格中用实线画出拼接成的新正方形;(图中每个小正方形的边长均为

2)如图,现有由个相同小正方形组成的十字形纸板,请在图中画出分割线,拼出一个新正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水果市场的甲、乙两家商店中都有批发某种水果,批发该种水果x千克时,在甲、乙两家商店所花的钱分别为y1元和y2元,已知y1y2关于x的函数图象分别为如图所示的折线OAB和射线OC

1)当x的取值为   时,在甲乙两家店所花钱一样多?

2)当x的取值为   时,在乙店批发比较便宜?

3)如果批发30千克该水果时,在甲店批发比在乙店批发便宜50元,求射线AB的表达式,并写出定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,∠B的角平分线BEAD交于点EBED的角平分线EFDC交于点F,若AB=9DF=2FC,则BC=____.(结果保留根号)

查看答案和解析>>

同步练习册答案