精英家教网 > 初中数学 > 题目详情

如图,抛物线y=-数学公式x2+数学公式x-4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.
(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;
(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;
(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.

解:(1)抛物线解析式为y=-x2+x-4,令y=0,
即-x2+x-4=0,解得x=1或x=5,∴A(1,0),B(5,0).
如答图1所示,分别延长AD与EM,交于点F.

∵AD⊥PC,BE⊥PC,∴AD∥BE,∴∠MAF=∠MBE.
在△AMF与△BME中,

∴△AMF≌△BME(ASA),
∴ME=MF,即点M为Rt△EDF斜边EF的中点,
∴MD=ME,即△MDE是等腰三角形.

(2)答:能.
抛物线解析式为y=-x2+x-4=-(x-3)2+
∴对称轴是直线x=3,M(3,0);
令x=0,得y=-4,∴C(0,-4).
△MDE为等腰直角三角形,有3种可能的情形:
①若DE⊥EM,
由DE⊥BE,可知点E、M、B在一条直线上,
而点B、M在x轴上,因此点E必然在x轴上,
由DE⊥BE,可知点E只能与点O重合,即直线PC与y轴重合,
不符合题意,故此种情况不存在;
②若DE⊥DM,与①同理可知,此种情况不存在;
③若EM⊥DM,如答图2所示:

设直线PC与对称轴交于点N,
∵EM⊥DM,MN⊥AM,∴∠EMN=∠DMA.
在△ADM与△NEM中,

∴△ADM≌△NEM(ASA),
∴MN=MA.
抛物线解析式为y=-x2+x-4=-(x-3)2+,故对称轴是直线x=3,
∴M(3,0),MN=MA=2,
∴N(3,2).
设直线PC解析式为y=kx+b,∵点N(3,2),C(0,-4)在抛物线上,
,解得k=2,b=-4,∴y=2x-4.
将y=2x-4代入抛物线解析式得:2x-4=-x2+x-4,
解得:x=0或x=
当x=0时,交点为点C;当x=时,y=2x-4=3.
∴P(,3).
综上所述,△MDE能成为等腰直角三角形,此时点P坐标为(,3).

(3)答:能.
如答题3所示,设对称轴与直线PC交于点N.
与(2)同理,可知若△MDE为等腰直角三角形,直角顶点只能是点M.

∵MD⊥ME,MA⊥MN,∴∠DMN=∠EMB.
在△DMN与△EMB中,

∴△DMN≌△EMB(ASA),
∴MN=MB.
∴N(3,-2).
设直线PC解析式为y=kx+b,∵点N(3,-2),C(0,-4)在抛物线上,
,解得k=,b=-4,∴y=x-4.
将y=x-4代入抛物线解析式得:x-4=-x2+x-4,
解得:x=0或x=
当x=0时,交点为点C;当x=时,y=x-4=
∴P().
综上所述,△MDE能成为等腰直角三角形,此时点P坐标为().
分析:(1)在抛物线解析式中,令y=0,解一元二次方程,可求得点A、点B的坐标;
如答图1所示,作辅助线,构造全等三角形△AMF≌△BME,得到点M为为Rt△EDF斜边EF的中点,从而得到MD=ME,问题得证;
(2)首先分析,若△MDE为等腰直角三角形,直角顶点只能是点M.如答图2所示,设直线PC与对称轴交于点N,首先证明△ADM≌△NEM,得到MN=AM,从而求得点N坐标为(3,2);其次利用点N、点C坐标,求出直线PC的解析式;最后联立直线PC与抛物线的解析式,求出点P的坐标.
(3)当点P是抛物线在x轴下方的一个动点时,解题思路与(2)完全相同.
点评:本题是二次函数综合题型,考查了二次函数与一次函数的图象与性质、待定系数法、全等三角形的判定与性质、等腰直角三角形、解方程等知识点,题目难度较大.第(2)(3)问均为存在型问题,且解题思路完全相同,可以互相借鉴印证.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,抛物线C1,C2关于x轴对称;抛物线C1,C3关于y轴对称.抛物线C1,C2,C3与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线C1,C2,C3的顶点.HN垂直于x轴,垂足为N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形
AHBG
;等腰梯形
HGEF
;平行四边形
EGFM
;梯形
DMHC
;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN上方的抛物线于点F.问:在直线MN上是否存在点P,使得以P,E,D,F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线的顶点坐标为M(1,4),与x轴的一个交点是A(-1,0),与y轴交于点B,直线x=1交x轴于点N.
(1)求抛物线的解析式及点B的坐标;
(2)求经过B、M两点的直线的解析式,并求出此直线与x轴的交点C的坐标;
(3)若点P在抛物线的对称轴x=1上运动,请你探索:在x轴上方是否存在这样的P点,使精英家教网以P为圆心的圆经过点A,并且与直线BM相切?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)精英家教网.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.
(1)求抛物线的函数表达式;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c(a≠0)与x轴两交点是A(-1,0),B(3,0),则如图可知y<0时,x的取值范围是(  )
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步练习册答案