【题目】已知三点在数轴上所对应的数分别为且满足.动点从点出发,以2单位/秒的速度向右运动,同时,动点从点出发,以1单位秒的速度向左运动,线段为“变速区”,规则为: 从点运动到点期间速度变为原来的一半,之后立刻恢复原速,从点运动到点期间速度变为原来的两倍,之后也立刻恢复原速.当点到达点时,两点都停止运动.设运动的时间为秒.
(1) ______,______,______;
(2)①动点从点运动至点时,求的值;
②两点相遇时,求相遇点在数轴上所对应的数;
(3)若点为线段中点,当________秒时,.
【答案】(1);(2)①19s;②;(3)当秒时,.
【解析】
(1)根据平方和绝对值的非负性计算即可求出a和b的值,再根据两点间的距离公式即可求出AC的长度;
(2)①分别求出AO,BO和BC的距离,再根据“时间=路程÷速度”计算即可得出答案;②设P点在数轴上所对应的数为y,根据题意列出方程,解方程即可得出答案;
(3)根据线段中点的性质求出点D的坐标,设时间为t,分五种情况进行讨论,分别求出每种情况下点M和点N的坐标,再根据两点间的距离公式求出MD和ND,令MD=ND,解方程即可得出答案.
解:(1);
(2)①∵
∴
∴动点从点运动至点时,;
②设两点在点相遇,点在数轴上所对应的数为.
易知点落在线段段,依题意有:
解得:
∴两点相遇时,求相遇点在数轴上所对应的数为.
(3)若点为线段中点,则D在数轴上表示的数为5
设时间为t时,MD=ND
①当点N在CB上,点M在AO上运动时,M=-10+2t,N=18-t
则MD=15-2t,ND=13-t
即15-2t=13-t,解得t=2;
②当点N在CB上,点M在OD上运动时,M=t-5,N=18-t
则MD=10-t,ND=13-t
即10-t=13-t,无解;
③当点N在OB上,点M在OD上运动时,M=t-5,N=10-2(t-8)
则MD=10-t,ND=5-2(t-8)
即10-t=5-2(t-8),解得t=11;
④当点N在OB上,点M在DB上运动时,M=t-5,N=26-2t
则MD=t-10,ND=21-2t
即t-10=21-2t,解得t=;
⑤当点N在OA上,点M在BC上运动时,M=2t-20,N=13-t
则MD=2t-25,ND=t-8
即2t-25=t-8,解得t=17;
综上所述,当秒时,.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中点,,以为顶点在第一象限内作正方形.反比例函数、分别经过、两点(1)如图2,过、两点分别作、轴的平行线得矩形,现将点沿的图象向右运动,矩形随之平移;
①试求当点落在的图象上时点的坐标_____________.
②设平移后点的横坐标为,矩形的边与,的图象均无公共点,请直接写出的取值范围____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用1块A型钢板可制成2个C型模具和1个D型模具;用1块B型钢板可制成1个C型模具和3个D型模具,现准备A、B型钢板共100块,并全部加工成C、D型模具.
(1)若B型钢板的数量是A型钢板的数量的两倍还多10块,求A、B型钢板各有多少块?
(2)若销售C、D型模具的利润分别为80元/块、100元/块,且全部售出.
①当A型钢板数量为25块时,那么共可制成C型模具 个,D型模具 个;
②当C、D型模具全部售出所得的利润为34400元,求A型钢板有多少块?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是18,点E是AB边上的一个动点,点F是CD边上一点,,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点,处,当点落在直线BC上时,线段AE的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB 是⊙O 的直径,P 为 AB 延长线上的一点,PC 切⊙O 于点 C,AD⊥PC, 垂足为 D,弦 CE 平分∠ACB,交 AB 于点 F,连接 AE.
(1)求证:PC=PF;
(2)若 tan∠ABC=,AE=5,求线段 PC 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.
(1)求直线BC的函数表达式;
(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q,连接BM.
①若∠MBC=90°,求点P的坐标;
②若△PQB的面积为,请直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172,把身高160 cm的成员替换成一位165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )
A.平均数变小,方差变小B.平均数变大,方差变大
C.平均数变大,方差不变D.平均数变大,方差变小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB、CD、EF相交于O点,AB⊥CD,
(1)写出∠AOF, ∠DOE的邻补角;
(2)写出∠AOE, ∠DOF的对顶角;
(3)如果∠DOF=38°求∠AOF和∠AOE的度数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:
方案一:从包装盒加工厂直接购买所需的费与包装盒数满足如图1所示的函数关系.
方案二:租赁机器自己加工,所需费用(包括租赁机器的费用和生产包装盒的费用)与包装盒数满足如图2所示的函数关系.根据图回答下列问题:
(1)方案一中每个包装盒的价格是多少元?
(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?
(3)请分别求出y1、y2与x的函数关系式,如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com