【题目】(2017济宁,第21题,9分)已知函数的图象与x轴有两个公共点.
(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;
(2)题(1)中求得的函数记为C1.
①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;
②函数的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.
【答案】(1)m<且m≠0,;(2)①﹣2;②.
【解析】试题分析:(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m的不等式组,从而可求得m的取值范围;
(2)先求得抛物线的对称轴,当n≤x≤﹣1时,函数图象位于对称轴的左侧,y随x的增大而减小,当当x=n时,y有最大值﹣3n,然后将x=n,y=﹣3n代入求解即可;
(3)先求得点M的坐标,然后再求得当MP经过圆心时,PM有最大值,故此可求得点P的坐标,从而可得到函数C2的解析式.
试题解析:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.
∵m为符合条件的最大整数,∴m=2,∴函数的解析式为.
(2)抛物线的对称轴为x= =.
∵n≤x≤﹣1<,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小,∴当x=n时,y=﹣3n,∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去),∴n的值为﹣2.
(3)∵=,∴M(,).
如图所示:
当点P在OM与⊙O的交点处时,PM有最大值.
设直线OM的解析式为y=kx,将点M的坐标代入得:,解得:k=,∴OM的解析式为y=x.
设点P的坐标为(x,x).
由两点间的距离公式可知:OP==5,解得:x=2或x=﹣2(舍去),∴点P的坐标为(2,1),∴当点P与点M距离最大时函数C2的解析式为 .
科目:初中数学 来源: 题型:
【题目】我市某中学为了解孩子们对《地理中国》 《最强大脑》 《挑战不可能》 《超级演说家》 《中国诗词大会》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:
(1)本次调查共抽取了_________________名学生。
(2)补全条形统计图。
(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是__________度。
(4)若该校有1500名学生,请估计喜爱《最强大脑》节目的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上点表示的数是-8,点表示的数是2.动线段(点在点的右侧),从点与点重合的位置出发,以每秒2个单位的速度向右运动,运动时间为秒.
(1)①已知点表示的数是-6,试求点表示的数;
②用含有的代数式表示点表示的数;
(2)当时,求的值.
(3)试问当线段在什么位置时,或的值始终保持不变?请求出它的值并说明此时线段的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为( )
A.12B.16C.24D.32
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 4台 | 1200元 |
第二周 | 5台 | 6台 | 1900元 |
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC
(1)线段BC的长等于 ;
(2)请在图中按下列要求逐一操作,并回答问题:
①以点 为圆心,以线段 的长为半径画弧,与射线BA交于点D,使线段OD的长等于;
②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,点E、F在BD上,且BF=DE.
(1)写出图中所有你认为全等的三角形;
(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=30°,以下说法错误的是( )
A. AC=2CDB. AD=2CDC. AD=3BDD. AB=2BC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com