分析 ①由抛物线的开口向上、对称轴在y轴右侧、抛物线与y轴交于y轴负半轴,即可得出a>0、b<0、c<0,进而可得出abc>0,①正确;②由抛物线与x轴有两个不同的交点,可得出△=b2-4ac>0,b2>4ac,②错误;③由当x=-2时y>0,可得出4a-2b+c>0,③正确;④由抛物线对称轴的大致范围,可得出-2a<b<0,结合a>0、c<0可得出2a+b>0>c,④正确.综上即可得出结论.
解答 解:①∵抛物线开口向上,抛物线的对称轴在y轴右侧,抛物线与y轴交于y轴负半轴,
∴a>0,-$\frac{b}{2a}$>0,c<0,
∴b<0,abc>0,①正确;
②∵抛物线与x轴有两个不同交点,
∴△=b2-4ac>0,b2>4ac,②错误;
③当x=-2时,y=4a-2b+c>0,③正确;
④∵0<-$\frac{b}{2a}$<1,
∴-2a<b<0,
∴2a+b>0>c,④正确.
故答案为:①③④.
点评 本题考查了二次函数图象与系数的关系以及命题与定理,观察函数图象,逐一分析四条结论的正误是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3$\sqrt{10}$ | B. | 10$\sqrt{3}$ | C. | 9 | D. | 9$\sqrt{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com