精英家教网 > 初中数学 > 题目详情
4、已知:如图所示,E是AB延长线上的一点,AE=AC,AD平分∠BAC交BC于点D,BD=BE.求证:∠ABC=2∠C.
分析:由于AD是∠BAC的角平分线,因此∠1=∠2,结合AE=AC,AD=AD,利用SAS可证△AED≌△ACD,那么∠C=∠E,DC=DE,,而BD=BE,于是BD=BE,那么∠BDE=∠BED,因此∠ABC=∠BDE+∠BED,即可得∠ABC=2∠BED,从而有∠ABC=2∠C.
解答:证明:∵AD平分∠BAC,
∴∠1=∠2,
在△ADE和△ADC中,
∵AE=AC,∠1=∠2,AD=AD,
∴△ADE≌△ADC,
∴∠E=∠C,
∵BE=BD,
∴∠E=∠BDE,
∴∠ABC=∠E+∠BDE=2∠E,
∴∠ABC=2∠C.
点评:本题考查了角平分线定义、全等三角形的判定和性质、等边对等角、三角形外角性质,求证2倍角的问题常常用外角及等角来解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知:如图所示,AB是⊙O的直线,PB切⊙O于B,OP∥AC,求证:PC是⊙O的切线.






查看答案和解析>>

科目:初中数学 来源: 题型:

26、已知:如图所示,E是正方形ABCD边BC延长线一点,若EC=AC,AE交CD于F,则∠AFC=
112.5
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F且BE=CF.
求证:(1)AD是∠BAC的平分线;(2)AB=AC.

查看答案和解析>>

同步练习册答案