1£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬AC=$6\sqrt{3}$cm£¬BC=6cm£¬¾­¹ýA£¬BµÄÖ±ÏßlÒÔ1cm/ÃëµÄËÙ¶ÈÏòÏÂ×÷ÔÈËÙƽÒÆÔ˶¯£¬½»BCÓÚµãB¡ä£¬½»CDÓÚµã D¡ä£¬Óë´Ëͬʱ£¬µãP´ÓµãB¡ä³ö·¢£¬ÔÚÖ±ÏßlÉÏÒÔ1cm/ÃëµÄËÙ¶ÈÑØÖ±ÏßlÏòÓÒÏ·½Ïò×÷ÔÈËÙÔ˶¯£®ÉèËüÃÇÔ˶¯µÄʱ¼äΪtÃ룮
£¨1£©ÄãÇó³öµÄABµÄ³¤ÊÇ12cm£»
£¨2£©¹ýµãC×÷CD¡ÍABÓÚµãD£¬tΪºÎֵʱ£¬µãPÒƶ¯µ½CDÉÏ£¿
£¨3£©tΪºÎֵʱ£¬ÒÔµãPΪԲÐÄ¡¢1cmΪ°ë¾¶µÄÔ²ÓëÖ±ÏßCDÏàÇУ¿
£¨4£©ÒÔµãPΪԲÐÄ¡¢1cmΪ°ë¾¶µÄ¡ÑPÓëCDËùÔÚµÄÖ±ÏßÏཻʱ£¬ÊÇ·ñ´æÔÚµãPÓëÁ½¸ö½»µã¹¹³ÉµÄÈý½ÇÐÎÊǵȱßÈý½ÇÐΣ¿Èô´æÔÚ£¬Ö±½Óд³ötµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý¹´¹É¶¨Àí¼´¿ÉÇóµÃ½á¹û£»
£¨2£©ÓÉÌâ¿ÉµÃ¡ÏBCD=30¡ã£¬¸ù¾Ýº¬30¡ãµÄÖ±½ÇÈý½ÇÐεÄÐÔÖʼ´¿ÉÇóµÃ½á¹û£»
£¨3£©´ËÌâ¿É·Ö×÷Á½ÖÖÇé¿ö£¬¢Ùµ±µãPÔÚCD×ó²à£¬¡ÑPÓëCDµÚÒ»´ÎÏàÇÐʱ£¬¢Úµ±µãPÔÚCDÓҲ࣬¡ÑPÓëCDµÚ¶þ´ÎÏàÇÐʱ£¬¸ù¾ÝÖ±ÏߺÍÔ²µÄλÖùØϵ½øÐзÖÎö£»
£¨4£©´ËÌâ¿É·Ö×÷Á½ÖÖÇé¿ö£¬¢Ùµ±µãPÔÚCD×ó²à£¬¢Úµ±µãPÔÚCDÓҲ࣬½áºÏµÈ±ßÈý½ÇÐεÄÐÔÖÊ·ÖÎö£®

½â´ð ½â£º£¨1£©¡ß¡ÏACB=90¡ã£¬AC=$6\sqrt{3}$cm£¬BC=6cm£¬
¡àAB=$\sqrt{A{C}^{2}+B{C}^{2}}=12$cm£»
¹Ê´ð°¸Îª£º12cm£»
£¨2£©¡ßÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬AC=$6\sqrt{3}$cm£¬BC=6cm£¬
¿ÉµÃ¡ÏBCD=30¡ã£¬
¡àµ±µãPÒƶ¯µ½CDÉÏʱ£¬ÓÐ6-t=2t£¬
½âµÃ£ºt=2£¬
µ±t=2ʱ£¬µãPÒƶ¯µ½CDÉÏ£»
£¨3£©¢Ùµ±¡ÑPÓëCDµÚÒ»´ÎÏàÇÐʱ£¬¸ù¾ÝÖ±ÏߺÍÔ²ÏàÇУ¬ÔòÔ²Ðĵ½Ö±ÏߵľàÀëµÈÓÚÔ²µÄ°ë¾¶£¬µÃ£º
3-$\frac{3}{2}$t=1£¬½âµÃ£ºt=$\frac{4}{3}$£»
¢Ú¡ÑPÓëCDµÚ¶þ´ÎÏàÇÐʱ£¬¸ù¾ÝÖ±ÏߺÍÔ²ÏàÇУ¬ÔòÔ²Ðĵ½Ö±ÏߵľàÀëµÈÓÚÔ²µÄ°ë¾¶£¬µÃ£º
$\frac{3}{2}$t-3=1£¬½âµÃ£ºt=$\frac{8}{3}$£»
µ±t=$\frac{4}{3}$»òt=$\frac{8}{3}$£»
£¨4£©¢Ùµ±µãPÔÚCD×ó²à£¬µãPÓëÁ½¸ö½»µã¹¹³ÉµÄÈý½ÇÐÎÊǵȱßÈý½ÇÐΣ¬2-t=$\frac{\sqrt{3}}{2}$£¬
½âµÃ£ºt=2-$\frac{\sqrt{3}}{2}$£»
¢Úµ±µãPÔÚCDÓҲ࣬µãPÓëÁ½¸ö½»µã¹¹³ÉµÄÈý½ÇÐÎÊǵȱßÈý½ÇÐΣ¬t-2=$\frac{\sqrt{3}}{2}$£¬
½âµÃ£ºt=2+$\frac{\sqrt{3}}{2}$£®

µãÆÀ ´ËÌ⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣮½âÌâʱ£¬ÒªÇóѧÉú¾ßÓнâÖ±½ÇÈý½ÇÐΡ¢Ö±ÏߺÍÔ²µÄλÖùØϵµÈ֪ʶµÄ×ÛºÏÓ¦ÓÃÄÜÁ¦£¬ÄѶȽϴ󣮴ËÌ⿼²éÔ²µÄ×ÛºÏÎÊÌ⣬֪ʶµã¶à£¬¹Ø¼üÊǸù¾ÝÔ²ÓëÖ±ÏߵĹØϵ½øÐзÖÎö£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÎªÁËÌá¸ßÖÐѧÉúÉíÌåËØÖÊ£¬Ñ§Ð£¿ªÉèÁËA£ºÀºÇò¡¢B£º×ãÇò¡¢C£ºÌøÉþ¡¢D£ºÓðëÇòËÄÖÖÌåÓý»î¶¯£¬ÎªÁ˽âѧÉú¶ÔÕâËÄÖÖÌåÓý»î¶¯µÄϲ»¶Çé¿ö£¬ÔÚȫУËæ»ú³éÈ¡Èô¸ÉÃûѧÉú½øÐÐÎʾíµ÷²é£¨Ã¿¸ö±»µ÷²éµÄ¶ÔÏó±ØÐëÑ¡Ôñ¶øÇÒÖ»ÄÜÔÚËÄÖÖÌåÓý»î¶¯ÖÐÑ¡ÔñÒ»ÖÖ£©£¬½«Êý¾Ý½øÐÐÕûÀí²¢»æÖƳÉÒÔÏÂÁ½·ùͳ¼Æͼ£¨Î´»­ÍêÕû£©£®

£¨1£©Õâ´Îµ÷²éÖУ¬Ò»¹²µ÷²éÁË200ÃûѧÉú£»
£¨2£©Ç벹ȫÁ½·ùͳ¼Æͼ£»
£¨3£©ÈôÓÐ3Ãûϲ»¶ÌøÉþµÄѧÉú£¬1Ãûϲ»¶×ãÇòµÄѧÉú×é¶ÓÍâ³ö²Î¼ÓÒ»´ÎÁªÒê»î¶¯£¬Óû´ÓÖÐÑ¡³ö2È˵£ÈÎ×鳤£¨²»·ÖÕý¸±£©£¬ÇóÒ»ÈËÊÇϲ»¶ÌøÉþ¡¢Ò»ÈËÊÇϲ»¶×ãÇòµÄѧÉúµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¨1£©£¬¡ÏABC=90¡ã£¬OΪÉäÏßBCÉÏÒ»µã£¬OB=4£¬ÒÔµãOΪԲÐÄ£¬$\frac{1}{2}$BO³¤Îª°ë¾¶×÷¡ÑO½»BCÓÚµãD¡¢E£®
£¨1£©µ±ÉäÏßBAÈƵãB˳ʱÕë·½ÏòÐýת360¡ã£¬ÈôBAÓë¡ÑOÏàÇÐʱ£¬ÄÇôBAÐýתÁ˶àÉٶȣ¿
£¨2£©ÈôÉäÏßBAÈƵãB°´Ë³Ê±Õë·½ÏòÐýתÓë¡ÑOÏཻÓÚM¡¢NÁ½µã£¨Èçͼ£¨2£©£©£¬MN=2$\sqrt{2}$£¬Çó$\widehat{MN}$µÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¾ØÐÎOABCµÄÁ½±ßOA¡¢OC·Ö±ðÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ£¬OA=6£¬OC=4£®µãP´ÓµãO³ö·¢£¬ÑØxÖáÒÔÿÃë1¸öµ¥Î»³¤µÄËÙ¶ÈÏòµãAÔÈËÙÔ˶¯£¬µ±µãPµ½´ïµãAʱֹͣÔ˶¯£¬ÉèµãPÔ˶¯µÄʱ¼äÊÇtÃ룮½«Ï߶ÎCPµÄÖеãÈƵãP°´Ë³Ê±Õë·½ÏòÐýת90¡ãµÃµãD£¬µãDËæµãPµÄÔ˶¯¶øÔ˶¯£¬Á¬½ÓDP¡¢DA£®Ôò
£¨1£©µãDµÄ×ø±êΪ£¨t+2£¬$\frac{1}{2}$t£©£»£¨2£©t=3ʱ£¬¡÷DPAµÄÃæ»ý×î´óΪ$\frac{9}{4}$£»
£¨3£©¡÷DPA²»ÄܳÉΪֱ½ÇÈý½ÇÐΣ»£¨4£©Ëæ×ŵãPµÄÔ˶¯£¬µãDÔ˶¯Â·Ïߵij¤Îª2$\sqrt{13}$£®
ÉÏÊö½áÂÛÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚÁâÐÎABCDÖУ¬AE¡ÍBCÓÚµãE£¬AF¡ÍCDÓÚµãF£¬ÇÒE¡¢F·Ö±ðΪBC¡¢CDµÄÖе㣬Ôò¡ÏEAFµÈÓÚ£¨¡¡¡¡£©
A£®60¡ãB£®55¡ãC£®45¡ãD£®30¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬¡÷ABD¡¢¡÷AEC¶¼ÊǵȱßÈý½ÇÐΣ®
£¨1£©Èçͼ1£¬ÇóÖ¤£ºBE=DC£®
£¨2£©Èçͼ2£¬ÈôH£¬G·Ö±ðΪDC£¬BEµÄÖе㣬ÊÔ̽¾¿µ±¡ÏBACµÄ¶ÈÊý·¢Éú±ä»¯Ê±£¬¡ÏAGHµÄ¶ÈÊýÊÇ·ñ·¢Éú±ä»¯£®Èô²»±ä£¬ÇëÇó³ö¡ÏAGHµÄ¶ÈÊý£»Èô±ä»¯£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èçͼ3£¬ÉèBE£¬DC½»ÓÚP£¬Á¬½ÓAP£®Ê½×Ó¢Ù$\frac{PB+PC+2PA}{PD+PE}$ºÍ¢Ú$\frac{PB+PC+PA}{PD+PE}$ÖнöÓÐÒ»¸öµÄֵΪ¶¨Öµ£¬ÇëÕÒ³öÆäÖÐΪ¶¨ÖµµÄʽ×Ó£¬Çó³öÆäÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®½âÏÂÁз½³Ì×飺
£¨1£©$\left\{\begin{array}{l}{x-y=3}\\{3x-8y=14}\end{array}\right.$                      
£¨2£©$\left\{\begin{array}{l}{x+4y=14}\\{\frac{x-3}{4}-\frac{y-3}{3}=\frac{1}{12}}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÏÂÁÐÔËËã´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®£¨-a£©£¨-a£©2=-a3B£®-2x2£¨-3x£©=-6x4C£®£¨-a£©3£¨-a£©2=-a5D£®£¨-a£©3£¨-a£©3=a6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ1£¬Õý·½ÐÎABCD£¬¡÷AMNÊǵÈÑüRt¡÷£¬¡ÏAMN=90¡ã£¬µ±Rt¡÷AMNÈƵãAÐýתʱ£¬±ßAM¡¢AN·Ö±ðÓëBC£¨»òÑÓ³¤Ïßͼ3£©¡¢CD£¨»òÑÓ³¤Ïßͼ3£©ÏཻÓÚµãE¡¢F£¬Á¬½ÓEF£¬Ð¡Ã÷ÓëСºìÔÚÑо¿Í¼1ʱ£¬·¢ÏÖÓÐÕâôһ¸ö½áÂÛ£ºEF=DF+BE£»ÎªÁ˽â¾öÕâ¸öÎÊÌ⣬СÃ÷ÓëСºì£¬¾­¹ýÌÖÂÛ£¬²ÉÈ¡ÁËÒÔÏ·½°¸£ºÑÓ³¤CBµ½G£¬Ê¹BG=DF£¬Á¬½ÓAG£¬µÃµ½Í¼2£¬ÇëÄã¸ù¾ÝСÃ÷¡¢Ð¡ºìµÄ˼·£¬½áºÏͼ2£¬½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©Ö¤Ã÷£º¡÷ADF¡Õ¡÷ABG£»
£¨2£©¸ù¾Ýͼ£¨3£©£¬¢Ù½áÂÛEF=DF+BEÊÇ·ñ³ÉÁ¢£¬Èç²»³ÉÁ¢£¬Ð´³öÈýÏ߶ÎEF¡¢DF¡¢BEµÄÊýÁ¿¹Øϵ²¢Ö¤Ã÷£®
¢ÚÈôCE=6£¬DF=2£¬Çó£ºÕý·½ÐÎABCDµÄ±ß³¤ÒÔ¼°¡÷AEFÖÐAE±ßÉϵĸߣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸