精英家教网 > 初中数学 > 题目详情

【题目】如图1和图2是直线上一动点,两点在直线的同侧,且点所在直线与不平行.

1)当点运动到位置时,距离点最近,在图1中的直线上画出点的位置;

2)当点运动到位置时,与点的距离和与点距两相等,请在图2中作出位置;

3)在直线上是否存在这样一点,使得到点的距离与到点的距离之和最小?若存在请在图3中作出这点,若不存在清说明理由.

(要求:不写作法,请保留作图痕迹)

【答案】1)如图所示见解析;(2)如图所示见解析;(3)如图所示见解析.

【解析】

1)当AP1m时,P1距离点A最近;

2)作AB的垂直平分线交m于点P2即可;

3)作点A关于直线m的对称点A′,连接A′B交直线m于点P3

1)如图所示;

2)如图所示;

3)如图所示;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为响应市政府绿色出行的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他骑公共自行车比自驾车平均每小时少行驶45千米,他从家出发到上班地点,骑公共自行车所用的时间是自驾车所用的时间的4倍.小张骑公共自行车平均每小时行驶多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,BC=a AB=cAC=b,则不能作为判定△ABC是直角三角形的条件的是(

A.B.A∶∠B∶∠C=1∶4∶3

C.abc =7∶24∶25D.abc =4∶5∶6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,.动点分别从点、点同时出发,相向而行,速度都为.以为一边向上作正方形,过点,交于点.设运动时间为,单位:,正方形和梯形重合部分的面积为

时,点与点重合.

时,点上.

当点两点之间(不包括两点)时,求之间的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,已知△ABC为等边三角形,DE分别为BCAC边上的两动点(与点ABC不重合),且总使CD = AEADBE相交于点F

1)求证:AD = BE

2)求∠BFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下面的内容,再解答问题.

(阅读)例题:求多项式m2 + 2mn+2n2-6n+13的最小值.

解;m2+2mn+2n2-6n+ 13= (m2 +2mn+n2)+ (n2-6n+9)+4= (m+n)2+(n-3)2+4

(m+n)20, (n-3)20

∴多项式m2+2mn+2n2-6n+ 13的最小值是4.

(解答问题)

1)请写出例题解答过程中因式分解运用的公式是

2)己知abc是△ABC的三边,且满足a2+b2=l0a+8b-41,求第三边c的取值范围;

(3)求多项式-2x24xy3y2 3y26y7 的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙D的直径,AD切⊙D于点A,EC=CB.则下列结论:①BA⊥DA;②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正确的个数有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD与BC,OC分别相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤△CEF≌△BED.其中一定成立的结论是_____.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(-35),B(-21),C(-13).

1)画出ABC关于x轴的对称图形A1B1C1

2)画出A1B1C1沿x轴向右平移4个单位长度后得到的A2B2C2

3)如果AC上有一点Mab)经过上述两次变换,那么对应A2C2上的点M2的坐标是

查看答案和解析>>

同步练习册答案