分析 (1)由等边三角形的性质得出AC=BC,∠ACB=60°,由SAS证明△ADC≌△BEC即可;
(2)由全等三角形的性质得出∠ACD=∠BCE=60°,DC=EC,即可得出结论.
解答 (1)证明:∵△ABC是等边三角形,
∴AC=BC,∠ACB=60°,
在△ADC和△BEC中,$\left\{\begin{array}{l}{AC=BC}&{\;}\\{∠CAD=∠CBE}&{\;}\\{AD=BE}&{\;}\end{array}\right.$,
∴△ADC≌△BEC(SAS);
(2)解:△DCE是等边三角形;理由如下:
∵△ADC≌△BEC,
∴∠ACD=∠BCE=60°,DC=EC,
即△DCE是等腰三角形,
∴△DCE是等边三角形.
点评 本题考查了等腰三角形的判定定理,直角三角形的性质,熟记等腰三角形的判定是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 36° | B. | 44° | C. | 46° | D. | 54° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ab | B. | $\frac{1}{3}$ab | C. | $\frac{1}{4}$ab | D. | ab |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com