精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,∠A140°,∠D80°

1)如图①,若∠ABC的平分线BEDC于点E,且BEAD,试求出∠C的度数;

2)如图②,若∠ABC和∠BCD的平分线交于点E,试求出∠BEC的度数.

【答案】160°;(2110°

【解析】

1)根据平行线的性质得到∠ABE的度数,再根据角平分线的定义得到∠ABC的度数,进一步根据四边形的内角和定理进行求解;
2)根据四边形的内角和定理以及角平分线的概念求得∠EBC+ECB的度数,再进一步求得∠BEC的度数.

解: 1)∵BEAD

∴∠A+∠ABE180°

140°+∠ABE180°.

∴∠ABE40°.

∴∠ABC80°.

∵∠A+∠ABC+∠C+∠D360°

∴∠C360°140°80°80°60°.

2)∵∠EBCABC,∠ECBBCD

由∠A+∠ABC+∠BCD+∠D360°,

140°2EBC2ECB80°360°.

∴∠EBC+∠ECB70°.

∴∠BEC180°-70°=110°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,,且上,于点.若,则的度数是(

A.160°B.150°C.140°D.120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点是第一象限内的点,直线轴于点,交轴负半轴于点.连接

1)求的面积;

2)求点的坐标和的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两名同学做摸球游戏,他们把三个分别标有123的大小和形状完全相同的小球放在一个不透明的口袋中.

1)求从袋中随机摸出一球,标号是1的概率;

2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线lyx,点A120),过点A1x轴的垂线交直线l于点B1,以A1B1为边,向右侧作正方形A1B1C1A2,延长A2C1交直线l于点B2;以A2B2为边,向右侧作正方形A2B2C2A3,延长A3C2交直线l于点B3;以A3B3为边,向右侧作正方形A3B3C3A4,延长A4C3交直线l于点B4;按照这个规律继续作下去,点Bn的横坐标为_.(结果用含正整数n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】运动会中裁判员使用的某品牌遮阳伞如图1所示,图2是其剖面图,若AG平分∠BAC与∠EDFABED,求证:ACDF

请将横线上的证明过程和依据的定理补充完整.

证明:∵ABDE

∴∠   =∠      

AG平分∠BACAG平分∠EDF(已知)

∴∠DAC=∠DAB,∠GDF=∠GDE   ).

∴∠DAC=∠GDF   ).

ACDF   ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,按以下步骤作图:①分别以 BC 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 MN;②作直线 MN AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为

A.90°B.95°C.105°D.110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一个长方形花园,对角线AC是一条小路,现要在AD边上找一个位置建报亭H,使报亭H到小路两端点AC的距离相等.

1)用尺规作图的方法,在图中找出报亭H的位置(不写作法,但需保留作图痕迹,交代作图结果)

2)如果AD80mCD40m,求报亭H到小路端点A的距离.

查看答案和解析>>

同步练习册答案