精英家教网 > 初中数学 > 题目详情
如图,AB是圆O的直径,弦CD⊥AB,垂足为E,若AB=10,CD=8,则AE=
2
2
分析:由CD的长根据垂径定理可知CE的长,利用勾股定理可将弦心距OE的长求出,进而可求出AE的长.
解答:解:如图,连接OC.
∵弦CD⊥AB于E,CD=8,∴CE=4.
∵AB=10,∴OC=
1
2
AB=5.
在Rt△OCE中,CE2+OE2=OC2,即:42+OE2=52
解得:OE=3,
∴AE=OA-OE=2.
故答案是:2.
点评:本题综合考查了垂径定理和勾股定理的求法及性质.此类在圆中涉及弦长、半径的计算的问题,常把半弦长,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-
3
3
x+2与y轴的交点A和点M(-
3
2
,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的精英家教网四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(35):2.7 最大面积是多少(解析版) 题型:解答题

如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-x+2与y轴的交点A和点M(-,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》中考题集(38):6.4 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-x+2与y轴的交点A和点M(-,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(37):27.3 实践与探索(解析版) 题型:解答题

如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-x+2与y轴的交点A和点M(-,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2008年四川省眉山市中考数学试卷(解析版) 题型:解答题

(2008•眉山)如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-x+2与y轴的交点A和点M(-,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的四边形是平行四边形.

查看答案和解析>>

同步练习册答案