精英家教网 > 初中数学 > 题目详情
8.如图,E是正方形ABCD中CD边上一点,以点A为中心把△ADE顺时针旋转90°.
(1)在图中画出旋转后的图形;
(2)若旋转后E点的对应点记为M,点F在BC上,且∠EAF=45°,连接EF.
①求证:△AMF≌△AEF;
②若正方形的边长为6,AE=3$\sqrt{5}$,则EF=5.

分析 (1)在CB的延长线上截取BM=DE,则△ABM满足条件;
(2))①由旋转性质得AM=AE,∠MAE=90°,则∠MAF=∠EAF=45°,则可根据“SAS”判断△AMF≌△AEF;
②由△AMF≌△AEF得到EF=MF,即ME=BF+MB,加上BM=DE,所以EF=BF+DE,再利用勾股定理计算出DE=3,则CE=3,设EF=x,则BF=x-3,CF=9-x,然后在Rt△CEF中利用勾股定理得到(9-x)2+32=x2,然后解方程求出x即可.

解答 (1)解:如图,△ABM为所作;

(2)①证明:∵ABCD 是正方形,
∴∠BAD=90°,
∵△ADE绕点A顺时针旋转90°得到△ABM,
∴AM=AE,∠MAE=90°,
又∵∠EAF=45°,
∴∠MAF=45°,
∴∠MAF=∠EAF,
在△AMF和△AEF中
$\left\{\begin{array}{l}{AM=AE}\\{∠MAF=∠EAF}\\{AF=AF}\end{array}\right.$,
∴△AMF≌△AEF;
②解:∵△AMF≌△AEF,
∴EF=MF,
即ME=BF+MB,
而BM=DE,
∴EF=BF+DE,
在Rt△ADE中,DE=$\sqrt{(3\sqrt{5})^{2}-{6}^{2}}$=3,
∴CE=6-3=3,
设EF=x,则BF=x-3,
∴CF=6-(x-3)=9-x,
在Rt△CEF中,∵CF2+CE2=EF2
∴(9-x)2+32=x2,解得x=5,
解EF=5.
故答案为5.

点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了正方形的性质和全等三角形的判定与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.若-5x4ym与xn+1y2的和仍是一个单项式,则m+n的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.在平面直角坐标系中,直线y=-x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,则此正方形落在x轴正半轴的顶点坐标为(1.5,0)或(1,0).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,CA⊥BE于A,AD∥BC,若∠1=54°,则∠C等于(  )
A.30°B.36°C.45°D.54°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.图中有8块小立方方块,请把它的主视图、左视图和俯视图画出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.王老师获得一张2016宝应春节联欢晚会的门票,想奖给班级学校优秀的同学,通过考察,小明和小刚脱颖而出,但问题是只有一张门票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看晚会,他们各自提出了一个方案:
(1)小明的方案:将红桃2、3、4、5四张牌背面朝上,小明先抽一张,记下牌面数字后放回,小刚再从中抽一张,若两张牌上的数字之和是奇数,则小明看晚会,否则小刚看晚会,你认为小明的方案公平吗?请用列表法或画树状图的方法说明;
(2)小刚将小明的方案修改为只用红桃2、3、4三张牌,抽取方式规则不变,小刚的方案公平吗(只回答,不说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,为了测量出池塘两端A、B之间的距离,先在地面上取一点C,使∠ACB=90°,然后延长BD至D,使CD=BC,那么只要测量出AD的长度就得到A,B两点之间的距离,你能说明其中的道理吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.“五一”期间新华商场贴出促销海报.自商场活动期间,小莉同学随机调査了部分参加活动的顾客并将调查结果绘制了两幅不完整的统计图.请根据图中信息.解答下列问题:
(1)小莉同学随机调查的顾客有多少人?
(2)补全条形统计图,并求获一等奖的人数占所调查的人数的百分比是多少?
(3)若商场每天约有2000人次摸奖,请估计商场一天送出的购物券总金额是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知,点O是等边△ABC内的任一点,连接OA,OB,OC.
(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.
①∠DAO的度数是90°;
②用等式表示线段OA,OB,OC之间的数量关系,并证明;
(2)设∠AOB=α,∠BOC=β.
①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;
②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.

查看答案和解析>>

同步练习册答案