精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,AC和BD是它的两条切线,CO平分∠ACD.
(1)求证:CD是⊙O的切线;(2)若AC=2,BC=3,求AB的长.
(1)证明见解析(2)2
(1)证明:过O点作OE⊥CD,垂足为E,

∵AC是切线,∴OA⊥AC。
∵CO平分∠ACD,OE⊥CD,∴∠ACO=∠ECO,∠CAO=∠CEO,
又∵OC=OC,∴△ACO≌△ECO(AAS)。∴OA=OE。
∴CD是⊙O的切线。
(2)解:过C点作CF⊥BD,垂足为F,

∵AC,CD,BD都是切线,∴AC=CE=2,BD=DE=3。
∴CD=CE+DE=5。
∵∠CAB=∠ABD=∠CFB=90°,∴四边形ABFC是矩形。
∴BF=AC=2,DF=BD﹣BF=1。
在Rt△CDF中,CF2=CD2﹣DF2=52﹣12=24,∴AB=CF=2
(1)过O点作OE⊥CD于点E,通过角平分线的性质得出OE=OA即可证得结论。
(2)过点D作DF⊥BC于点F,根据切线的性质可得出DC的长度,从而在Rt△DFC中利用勾股定理可得出DF的长,可得出AB的长度。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.
(Ⅰ)探究新知:
如图①⊙O是△ABC的内切圆,与三边分别相切于点E、F、G..
(1)求证内切圆的半径r1="1;"
(2)求tan∠OAG的值;
(Ⅱ)结论应用
(1)如图②若半径为r2的两个等圆⊙O1、⊙O2外切,且⊙O1与AC、AB相切,⊙O2与BC、AB相切,求r2的值;
(2)如图③若半径为rn的n个等圆⊙O1、⊙O2、…、⊙On依次外切,且⊙O1与AC、AB相切,⊙On与BC、AB相切,⊙O1、⊙O2、…、⊙On均与AB相切,求rn的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙O是△ABC的外接圆,AB为⊙O的直径,弦CD交AB于E,
∠BCD=∠BAC .
(1)求证:AC=AD;
(2)过点C作直线CF,交AB的延长线于点F,若∠BCF=30°,则结论“CF一定是⊙O的切线”是否正确?若正确,请证明;若不正确,请举反例.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为(     )
A.5米B.5C.7米D.8米

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

圆内接四边形ABCD中,∠A、∠B、∠C的度数比是2︰3︰6,则∠D的度数是(   )
(A)67.5°   (B)135°   (C)112.5°   (D)110°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知扇形的半径为3 cm,圆心角为1200,则此扇形的的弧长是    ▲   cm,扇形的面积是    ▲   cm2(结果保留π)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是【   】
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在半径为R的圆中,垂直平分半径的弦长等于
A.B.C.D.R

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BM0=120o,则⊙C的半径长为【   】

A.6       B.5       C.3       D。

查看答案和解析>>

同步练习册答案