Èçͼ1£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90°£¬BC=8ÀåÃ×£¬AC=12ÀåÃ×£¬µãDÔÚACÉÏ£¬CD=3ÀåÃ×£®µãP¡¢Q·Ö±ðÓÉA¡¢CÁ½µãͬʱ³ö·¢£¬µãPÑØAC·½ÏòÏòµãCÔÈËÙÒƶ¯£¬ËÙ¶ÈΪÿÃëÊÇkÀåÃ×£»µãQÑØCB·½ÏòÏòµãBÔÈËÙÒƶ¯£¬ËÙ¶ÈΪÿÃë1ÀåÃ×£®ÉèÔ˶¯µÄʱ¼äΪxÃ루0£¼x£¼8£©£¬¡÷DCQµÄÃæ»ýΪy1ƽ·½ÀåÃ×£¬¡÷PCQµÄÃæ»ýΪy2ƽ·½ÀåÃ×£®
£¨1£©Çóy1ÓëxµÄº¯Êý¹Øϵ£¬²¢ÔÚͼ2Öл­³öy1µÄͼÏó£»
£¨2£©Èçͼ2£¬y2µÄͼÏóÊÇÅ×ÎïÏßµÄÒ»²¿·Ö£¬Æ䶥µã×ø±êÊÇ£¨4£¬12£©£¬ÇókµÄÖµºÍy2ÓëxµÄº¯Êý¹Øϵ£»
£¨3£©ÔÚͼ2ÖУ¬Éèy1Óëy2µÄͼÏóµÄ½»µãΪM£¬µãGÊÇxÖáÕý°ëÖáÉÏÒ»µã£¨0£¼OG£¼6£©£¬¹ýG×÷EF´¹Ö±ÓÚxÖᣬ·Ö±ðÓëy1¡¢y2µÄͼÏó½»ÓÚµãE¡¢F£®Çó¡÷OMFÃæ»ýµÄ×î´óÖµ£®
¢Ù˵³öÏ߶ÎEFµÄ³¤ÔÚͼ1ÖÐËù±íʾµÄʵ¼ÊÒâÒ壻
¢ÚÇó¡÷OMFÃæ»ýµÄ×î´óÖµ£®

¡¾´ð°¸¡¿·ÖÎö£º£¨1£©Ö±½Ó¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½¿ÉµÃy1=x£»
£¨2£©ÏÈÉèy2=x£¨12-kx£©=-x2+6x£¬°Ñx=12ʱ£¬y2=12´úÈë½âÎöʽ¿ÉÇóµÃk=£¬¼´y2=-x2+6x£»
£¨3£©¢ÙÏ߶ÎÊdz¤EF=y2-y1£¬±íʾ¡÷PCQÓë¡÷DCQµÄÃæ»ý²î£¨»ò¡÷PDQµÄÃæ»ý£©£¬ÓÉx=-x2+6xµÃµãM£¨6£¬9£©£¬¹ýµãM×öMH¡ÍEFÓÚµãH£¬ÔòS¡÷OMF=S¡÷OEF+S¡÷MEF=3EF=3£¨-x2+6x-x£©=£¨x-3£©2+£¬ËùÒÔµ±x=3ʱ£¬¡÷OMFµÄÃæ»ýÓÐ×î´óֵΪ£®
½â´ð£º½â£º£¨1£©y1=x
»­Í¼ÕýÈ·£¨2·Ö£©

£¨2£©y2=x£¨12-kx£©=-x2+6x   £¨4·Ö£©
ÓÉÌâÉ裺µ±x=4ʱ£¬y2=12£¬
ËùÒÔ-8k+24=12£¬
½âµÃk=£¨5·Ö£©
´Ó¶øy2=-x2+6x   £¨6·Ö£©

£¨3£©¢ÙÏ߶ÎÊdz¤EF=y2-y1£¬±íʾ¡÷PCQÓë¡÷DCQµÄÃæ»ý²î£¨»ò¡÷PDQµÄÃæ»ý£©£¨7·Ö£©
¢Ú½â·¨Ò»£ºÓÉx=-x2+6x
µÃµãM£¨6£¬9£©
¹ýµãM×öMH¡ÍEFÓÚµãH£¬ÔòS¡÷OMF=S¡÷OEF+S¡÷MEF=EF£®
OG+EF£®MH=EF×6=3EF£¨9·Ö£©
=3£¨-x2+6x-x£©=£¨x-3£©2+£¨10·Ö£©
ËùÒÔµ±x=3ʱ£¬¡÷OMFµÄÃæ»ýÓÐ×î´óֵΪ£¨12·Ö£©
½â·¨¶þ£ºÓÉx=-x2+6xµÃµãM£¨6£¬9£©
¹ýµãM×öMH¡ÍxÖáÓÚµãN£¬Ôò
S¡÷OMF=SËıßÐÎONMF-S¡÷ONM=S¡÷OGF+SÌÝÐÎFGNM-S¡÷ONM£¨9·Ö£©
=-x2+x   £¨10·Ö£©
ËùÒÔµ±x=3ʱ£¬¡÷OMFµÄÃæ»ýÓÐ×î´óֵΪ£®£¨12·Ö£©
µãÆÀ£º±¾Ìâ½áºÏÈý½ÇÐεÄÐÔÖÊ¿¼²é¶þ´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬺¯ÊýºÍ¼¸ºÎͼÐεÄ×ÛºÏÌâÄ¿£¬ÒªÀûÓÃÈý½ÇÐεÄÐÔÖʺͶþ´Îº¯ÊýµÄÐÔÖÊ°ÑÊýÓëÐÎÓлúµÄ½áºÏÔÚÒ»Æð£¬ÀûÓÃͼÐμäµÄ¡°ºÍ²î¡°¹ØϵÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬ÔÚRt¡÷ABCÖУ¬¡ÏA=90¡ã£¬AB=AC£¬BC=4
2
£¬ÁíÓÐÒ»µÈÑüÌÝÐÎDEFG£¨GF¡ÎDE£©µÄµ×±ßDEÓëBCÖغϣ¬Á½Ñü·Ö±ðÂäÔÚAB£¬ACÉÏ£¬ÇÒG£¬F·Ö±ðÊÇAB£¬ACµÄÖе㣮
¾«Ó¢¼Ò½ÌÍø
£¨1£©ÇóµÈÑüÌÝÐÎDEFGµÄÃæ»ý£»
£¨2£©²Ù×÷£º¹Ì¶¨¡÷ABC£¬½«µÈÑüÌÝÐÎDEFGÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØBC·½ÏòÏòÓÒÔ˶¯£¬Ö±µ½µãDÓëµãCÖغÏʱֹͣ£®ÉèÔ˶¯Ê±¼äΪxÃ룬Ô˶¯ºóµÄµÈÑüÌÝÐÎΪDEF¡äG¡ä£¨Èçͼ2£©£®
̽¾¿1£ºÔÚÔ˶¯¹ý³ÌÖУ¬ËıßÐÎBDG¡äGÄÜ·ñÊÇÁâÐΣ¿ÈôÄÜ£¬ÇëÇó³ö´ËʱxµÄÖµ£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£»
̽¾¿2£ºÉèÔÚÔ˶¯¹ý³ÌÖС÷ABCÓëµÈÑüÌÝÐÎDEFGÖصþ²¿·ÖµÄÃæ»ýΪy£¬ÇóyÓëxµÄº¯Êý¹Øϵʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬ÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬AC=6£¬BC=8£¬µãDÔÚ±ßABÉÏÔ˶¯£¬DEƽ·Ö¡ÏCDB½»±ßBCÓÚµãE£¬EM¡ÍBD´¹×ãΪM£¬EN¡ÍCD´¹×ãΪN£®
¾«Ó¢¼Ò½ÌÍø
£¨1£©µ±AD=CDʱ£¬ÇóÖ¤£ºDE¡ÎAC£»
£¨2£©Ì½¾¿£ºADΪºÎֵʱ£¬¡÷BMEÓë¡÷CNEÏàËÆ£¿
£¨3£©Ì½¾¿£ºADΪºÎֵʱ£¬ËıßÐÎMENDÓë¡÷BDEµÄÃæ»ýÏàµÈ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=
1
4
x2-6
ÓëÖ±Ïßy=
1
2
x
ÏཻÓÚA£¬BÁ½µã£®
£¨1£©ÇóÏ߶ÎABµÄ³¤£»
£¨2£©ÈôÒ»¸öÉÈÐεÄÖܳ¤µÈÓÚ£¨1£©ÖÐÏ߶ÎABµÄ³¤£¬µ±ÉÈÐεİ뾶ȡºÎֵʱ£¬ÉÈÐεÄÃæ»ý×î´ó£¬×î´óÃæ»ýÊǶàÉÙ£»
£¨3£©Èçͼ2£¬Ï߶ÎABµÄ´¹Ö±Æ½·ÖÏß·Ö±ð½»xÖá¡¢yÖáÓÚC£¬DÁ½µã£¬´¹×ãΪµãM£¬·Ö±ðÇó³öOM£¬OC£¬ODµÄ³¤£¬²¢ÑéÖ¤µÈʽ
1
OC2
+
1
OD2
=
1
OM2
ÊÇ·ñ³ÉÁ¢£»
£¨4£©Èçͼ3£¬ÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬CD¡ÍAB£¬´¹×ãΪD£¬ÉèBC=a£¬AC=b£¬AB=c£®CD=b£¬ÊÔ˵Ã÷£º
1
a2
+
1
b2
=
1
h2
£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬ÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬·Ö±ðÒÔAB¡¢ACΪµ×±ßÏò¡÷ABCµÄÍâ²à×÷µÈÑü¡÷ABDºÍACE£¬ÇÒAD¡ÍAC£¬AB¡ÍAE£¬DEºÍABÏཻÓÚF£®ÊÔ̽¾¿Ï߶ÎFD¡¢FEµÄÊýÁ¿¹Øϵ£¬²¢¼ÓÒÔÖ¤Ã÷£®
˵Ã÷£ºÈç¹ûÄã¾­Àú·´¸´Ì½Ë÷£¬Ã»ÓÐÕÒµ½½â¾öÎÊÌâµÄ·½·¨£¬¿ÉÒÔ´Óͼ2¡¢3ÖÐÑ¡È¡Ò»¸ö£¬²¢·Ö±ð²¹³äÌõ¼þ¡ÏCAB=45¡ã¡¢¡ÏCAB=30¡ãºó£¬ÔÙÍê³ÉÄãµÄÖ¤Ã÷£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬ÔÚRt¡÷ABCÖУ¬AB=AC=3£¬BDΪAC±ßµÄÖÐÏߣ¬AB1¡ÍBD½»BCÓÚB1£¬B1A1¡ÍACÓÚA1£®¾«Ó¢¼Ò½ÌÍø
£¨1£©ÇóAA1µÄ³¤£»
£¨2£©Èçͼ2£¬ÔÚRt¡÷A1B1CÖа´ÉÏÊö²Ù×÷£¬ÔòAA2µÄ³¤Îª
 
£»
£¨3£©ÔÚRt¡÷A2B2CÖа´ÉÏÊö²Ù×÷£¬ÔòAA3µÄ³¤Îª
 
£»
£¨4£©Ò»Ö±°´ÉÏÊö²Ù×÷µÃµ½Rt¡÷An-1Bn-1C£¬ÔòAAnµÄ³¤Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸