精英家教网 > 初中数学 > 题目详情
12.把下面的说理过程补充完整:
如图,已知:∠AED=∠C,∠3=∠B.试判断∠1与∠2的数量关系,并说明理由.(注:理由中的符号“∵”表示“因为”,“∴”表示“所以”)
解:∠1+∠2=180°.理由如下:
∵∠AED=∠C(已知)
∴DE∥BC.(同位角相等,两直线平行)
∴∠B=∠ADE.(两直线平行,同位角相等)
∵∠3=∠B(已知)
∴∠3=∠ADE.(等量代换)
∴EF∥AB.(内错角相等,两直线平行)
∴∠2+∠ADF=180°.(两直线平行,同旁内角互补)
∵∠1=∠ADF.(对顶角相等)
∴∠1+∠2=180°.(等量代换)

分析 根据利用平行线的性质证明两角互补的步骤,把解题过程补充完整即可.

解答 解:∠1+∠2=180°.理由如下:
∵∠AED=∠C(已知)
∴DE∥BC.(同位角相等,两直线平行)
∴∠B=∠ADE.(两直线平行,同位角相等)
∵∠3=∠B(已知)
∴∠3=∠ADE.(等量代换)
∴EF∥AB.(内错角相等,两直线平行)
∴∠2+∠ADF=180°.(两直线平行,同旁内角互补)
∵∠1=∠ADF.(对顶角相等)
∴∠1+∠2=180°.(等量代换)
故答案为:同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补;∠ADF;等量代换.

点评 本题考查了平行线的判定及性质以及对顶角的定义,解题的关键是根据平行线的性质找出同旁内角互补.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等或互补的角是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.已知二次函数y=x2+mx+m-5(m是常数).
(1)求证:不论m为何值,该函数的图象与x轴一定有两公共点;
(2)若该二次函数的图象过点(0,-3),则将函数图象沿x轴怎样平移能使抛物线过原点?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.函数y=$\frac{x+3}{\sqrt{x-2}}$中,自变量x的取值范围是(  )
A.x>2B.x≥-3C.x>-3D.x≥2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知抛物线C1:y=$\frac{1}{2}$x2-2x-$\sqrt{3}$,与x轴相交于A、B两点(点A在点B的左边),与y轴交于点C,已知M(4,0),点P是抛物线上的点,其横坐标为6,点D为抛物线的顶点.

(1)求S△ABC
(2)点E、F是抛物线对称轴上的两动点,且已知E(2,a+$\sqrt{3}$)、F(2,a),当a为何值时,四边形PEFM周长最小?并说明理由.
(3)将抛物线C1绕点D旋转180°后得到抛物线C2沿直线CD平移,平移后的抛物线交y轴于点Q,顶点为R,平移后是否存在这样的抛物线,使△CRQ为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,二次函数的图象与x轴交于点A(-3,0),B(1,0),交y轴于点C(0,3),点C,D是二次函数图象上关于抛物线对称轴的一对对称点,一次函数的图象过点B,D.
(1)请直接写出点D的坐标;
(2)求二次函数的解析式;
(3)根据图象直接写出一次函数值大于二次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在平行四边形ABCD中,点E、F分别在AB、AD上,且AE=$\frac{1}{3}$AB,AF=$\frac{1}{4}$AD,连结EF交对角线AC于G,则$\frac{AG}{AC}$=$\frac{1}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,已知二次函数y=x2+bx+c的图象经过点A(-1,0),B(1,-2),该图象与x轴的另一个交点为C,则AC的长为3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.线段CD是由线段AB平移得到的,点A(-2,5)的对应点为C(3,7),则点B(-4,-7)的对应点D的坐标为(  )
A.(2,9)B.(5,2)C.(1,-5)D.(-9,-5)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解下列方程组和不等式组.
(1)$\left\{\begin{array}{l}{\frac{m}{3}+\frac{n}{6}=2}\\{\frac{m}{4}+\frac{n}{4}=2}\end{array}\right.$
(2)$\left\{\begin{array}{l}{3x+1<x-3}\\{\frac{1+x}{2}≤\frac{1+2x}{3}+1}\end{array}\right.$,把解集在数轴上表示出来,并写出它的所有整数解.

查看答案和解析>>

同步练习册答案