精英家教网 > 初中数学 > 题目详情
如图,在?ABCD中,∠DAB=60°,AB=15cm.已知⊙O的半径等于3cm,AB,AD分别与⊙O相切于点E,F.⊙O在?ABCD内沿AB方向滚动,与BC边相切时运动停止.试求⊙O滚过的路程?

【答案】分析:⊙O滚过的路程即线段EN的长度.EN=AB-AE-BN,所以只需求AE、BN的长度即可.分别解所在的直角三角形.
解答:解:连接OE,OA、BO.                                   (1分)
∵AB,AD分别与⊙O相切于点E,F,
∴OE⊥AB,OE=3cm.                                 (2分)
∵∠DAB=60°,
∴∠OAE=30°.                                     (3分)
在Rt△AOE中,
AE=cm.                      (5分)
∵AD∥BC,∠DAB=60°,
∴∠ABC=120°.                                       (6分)
设当运动停止时,⊙O与BC,AB分别相切于点M,N,连接ON,OM.(7分)
同理可得,∠BON为30°,且ON为3cm,
∴BN=ON•tan30°=3×=cm,
EN=AB-AE-BN=15-3-=15-4cm.                                   (9分)
∴⊙O滚过的路程为(15-4)cm.                         (10分)
点评:此题考查了切线的性质、平行四边形的性质及解直角三角形等知识点,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在?ABCD中,对角线AC、BD相交于点O,AB=
29
,AC=4,BD=10.
问:(1)AC与BD有什么位置关系?说明理由.
(2)四边形ABCD是菱形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在?ABCD中,∠A的平分线交BC于点E,若AB=10cm,AD=14cm,则EC=
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春一模)感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在?ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•犍为县模拟)甲题:已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
乙题:如图,在?ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G,H.
(1)求证:△BAE∽△BCF.
(2)若BG=BH,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于点O,连接CE,则△CBE的周长是
2
13
+4
2
13
+4

查看答案和解析>>

同步练习册答案