17£®Èçͼ1£¬ÒÑÖªÅ×ÎïÏßy=x2+2x-3ÓëxÖáÏཻÓÚA£¬BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬DΪ¶¥µã£®
£¨1£©ÇóÖ±ÏßACµÄ½âÎöʽºÍ¶¥µãDµÄ×ø±ê£»
£¨2£©ÒÑÖªE£¨0£¬$\frac{1}{2}$£©£¬µãPÊÇÖ±ÏßACÏ·½µÄÅ×ÎïÏßÉÏÒ»¶¯µã£¬×÷PR¡ÍACÓÚµãR£¬µ±PR×î´óʱ£¬ÓÐÒ»Ìõ³¤Îª$\sqrt{5}$µÄÏ߶ÎMN£¨µãMÔÚµãNµÄ×ó²à£©ÔÚÖ±ÏßBEÉÏÒƶ¯£¬Ê×β˳´ÎÁ¬½ÓA¡¢M¡¢N¡¢P¹¹³ÉËıßÐÎAMNP£¬ÇëÇó³öËıßÐÎAMNPµÄÖܳ¤×îСʱµãNµÄ×ø±ê£»
£¨3£©Èçͼ2£¬¹ýµãD×÷DF¡ÎyÖá½»Ö±ÏßACÓÚµãF£¬Á¬½ÓAD£¬QµãÊÇÏ߶ÎADÉÏÒ»¶¯µã£¬½«¡÷DFQÑØÖ±ÏßFQÕÛµþÖÁ¡÷D1FQ£¬ÊÇ·ñ´æÔÚµãQʹµÃ¡÷D1FQÓë¡÷AFQÖصþ²¿·ÖµÄͼÐÎÊÇÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öAQµÄ³¤£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©·Ö±ðÁîx=0£¬y=0£¬¿ÉµÃA¡¢B¡¢CÈýµã×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¬×ª»¯Îª½â·½³Ì×é¼´¿É£®
£¨2£©Èçͼ1ÖУ¬ÉèP£¨m£¬m2+2m-3£©£¬ÓÉÌâÒ⣬µ±PR×î´óʱ£¬¡÷ACPµÄÃæ»ý×î´ó£¬¼´ËıßÐÎAPCOµÄÃæ»ý×î´ó£¬ÒòΪSËıßÐÎAPCO=S¡÷AOP+S¡÷POC-S¡÷AOC=$\frac{1}{2}$•3•£¨-m2-2m+3£©+$\frac{1}{2}$•3•£¨-m£©-$\frac{1}{2}$•3•3=-$\frac{3}{2}$m2-$\frac{9}{2}$m=-$\frac{3}{2}$£¨m+$\frac{3}{2}$£©2+$\frac{27}{8}$£¬ËùÒÔµ±m=-$\frac{3}{2}$ʱ£¬ËıßÐÎAPCOµÄÃæ»ý×î´ó£¬¼´PR×£¬¿ÉµÃP£¨-$\frac{3}{2}$£¬-$\frac{15}{4}$£©£¬½«µãPÑØBE·½ÏòƽÒÆ$\sqrt{5}$¸öµ¥Î»µÃµ½G£¨-$\frac{7}{2}$£¬-$\frac{11}{4}$£©£¬×÷µãA¹ØÓÚÖ±ÏßBEµÄ¶Ô³ÆµãK£¬Á¬½ÓGK½»BEÓÚM£¬´ËʱËıßÐÎAPNMµÄ××îС£¬Ïë°ì·¨Çó³öµãMµÄ×ø±ê¼´¿É½â¾öÎÊÌ⣮
£¨3£©·ÖÈýÖÖÇéÐÎÌÖÂÛ¼´¿É¢ÙÈçͼ2ÖУ¬µ±FD1¡ÍADʱ£¬Öصþ²¿·ÖÊÇRt¡÷FKQ£®¢ÚÈçͼ3ÖУ¬µ±FQ¡ÍADʱ£¬Öصþ²¿·ÖÊÇRt¡÷FQD1£¬¢ÛÈçͼ4ÖУ¬µ±QD1¡ÍACʱ£¬Öصþ²¿·ÖÊÇRt¡÷QMF£®·Ö±ðÇó³öAQ¼´¿É£®

½â´ð ½â£º£¨1£©¶ÔÓÚÅ×ÎïÏßy=x2+2x-3£¬Áîy=0£¬µÃx2+2x-3=0£¬½âµÃx=-3»ò1£¬
¡àA£¨-3£¬0£©£¬B£¨1£¬0£©£¬
Áîx=0£¬µÃy=-3£¬
¡àC£¨0£¬-3£©£¬
¡ßÅ×ÎïÏßy=x2+2x-3=£¨x+1£©2-4£¬
¡à¶¥µãD×ø±êΪ£¨-1£¬-4£©£¬
ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¬ÔòÓÐ$\left\{\begin{array}{l}{b=-3}\\{-3k+b=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-1}\\{b=-3}\end{array}\right.$£¬
¡àÖ±ÏßACµÄ½âÎöʽΪy=-x-3£¬µãD×ø±ê£¨-1£¬-4£©£®

£¨2£©Èçͼ1ÖУ¬ÉèP£¨m£¬m2+2m-3£©£¬

ÓÉÌâÒ⣬µ±PR×î´óʱ£¬¡÷ACPµÄÃæ»ý×î´ó£¬¼´ËıßÐÎAPCOµÄÃæ»ý×î´ó£¬
¡ßSËıßÐÎAPCO=S¡÷AOP+S¡÷POC-S¡÷AOC=$\frac{1}{2}$•3•£¨-m2-2m+3£©+$\frac{1}{2}$•3•£¨-m£©-$\frac{1}{2}$•3•3=-$\frac{3}{2}$m2-$\frac{9}{2}$m=-$\frac{3}{2}$£¨m+$\frac{3}{2}$£©2+$\frac{27}{8}$£¬
¡àµ±m=-$\frac{3}{2}$ʱ£¬ËıßÐÎAPCOµÄÃæ»ý×î´ó£¬¼´PR×£¬
¡àP£¨-$\frac{3}{2}$£¬-$\frac{15}{4}$£©£¬
½«µãPÑØBE·½ÏòƽÒÆ$\sqrt{5}$¸öµ¥Î»µÃµ½G£¨-$\frac{7}{2}$£¬-$\frac{11}{4}$£©£¬×÷µãA¹ØÓÚÖ±ÏßBEµÄ¶Ô³ÆµãK£¬Á¬½ÓGK½»BEÓÚM£¬´ËʱËıßÐÎAPNMµÄ××îС£¬
¡ßÖ±ÏßBEµÄ½âÎöʽΪy=-$\frac{1}{2}$x+$\frac{1}{2}$£¬Ö±ÏßAKµÄ½âÎöʽΪy=2x+6£¬
ÓÉ$\left\{\begin{array}{l}{y=2x+6}\\{y=-\frac{1}{2}x+\frac{1}{2}}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-\frac{11}{5}}\\{y=\frac{8}{5}}\end{array}\right.$£¬
¡àJ£¨-$\frac{11}{5}$£¬$\frac{8}{5}$£©£¬
¡ßAJ=JK£¬
¡àk£¨-$\frac{7}{5}$£¬$\frac{16}{5}$£©£¬
¡àÖ±ÏßKGµÄ½âÎöʽΪy=$\frac{17}{6}$x+$\frac{43}{6}$£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{17}{6}x+\frac{43}{6}}\\{y=-\frac{1}{2}x+\frac{1}{2}}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-2}\\{y=\frac{3}{2}}\end{array}\right.$£¬
¡àM£¨-2£¬$\frac{3}{2}$£©£¬½«µãMÏòÏÂƽÒÆ1¸öµ¥Î»£¬ÏòÓÒƽÒÆ2¸öµ¥Î»µÃµ½N£¬
¡àN£¨0£¬$\frac{1}{2}$£©£®

£¨3£©´æÔÚ£®
¢ÙÈçͼ2ÖУ¬µ±FD1¡ÍADʱ£¬Öصþ²¿·ÖÊÇRt¡÷FKQ£¬×÷QM¡ÍDFÓÚM£®

ÓÉÌâÒâ¿ÉÖªF£¨-1£¬-2£©£¬DF=2£¬AF=2$\sqrt{2}$£¬AC=3$\sqrt{2}$£¬AD=2$\sqrt{5}$
ÓÉ¡÷AKF¡×¡÷ACD£¬µÃ$\frac{AF}{AD}$=$\frac{FK}{CD}$=$\frac{AK}{AC}$£¬
¡à$\frac{2\sqrt{2}}{2\sqrt{5}}$=$\frac{FK}{\sqrt{2}}$=$\frac{AK}{3\sqrt{2}}$
¡àFK=$\frac{2\sqrt{5}}{5}$£¬AK=$\frac{6\sqrt{5}}{5}$£¬
¡àDK=$\sqrt{{2}^{2}-£¨\frac{2\sqrt{5}}{5}£©^{2}}$=$\frac{4\sqrt{5}}{5}$£¬ÉèQK=QM=x£¬
ÔÚRt¡÷QMDÖУ¬x2+£¨2-$\frac{2\sqrt{5}}{5}$£©2=£¨$\frac{4\sqrt{5}}{5}$-x£©2£¬
¡àx=1-$\frac{\sqrt{5}}{5}$£¬
¡àAQ=AK+KQ=1+$\sqrt{5}$

¢ÚÈçͼ3ÖУ¬µ±FQ¡ÍADʱ£¬Öصþ²¿·ÖÊÇRt¡÷FQD1£¬´ËʱAQ=$\frac{6\sqrt{5}}{5}$£®

¢ÛÈçͼ4ÖУ¬µ±QD1¡ÍACʱ£¬Öصþ²¿·ÖÊÇRt¡÷QMF£®

ÉèQM=QK=x£¬ÔÚRt¡÷AQMÖУ¬x2+£¨2$\sqrt{2}$-$\frac{2\sqrt{5}}{5}$£©2=£¨$\frac{6\sqrt{5}}{5}$-x£©2£¬
¡àx=$\frac{2\sqrt{2}}{3}$-$\frac{2\sqrt{5}}{15}$£¬
¡àAQ=AK-QK=$\frac{6\sqrt{5}}{5}$-£¨$\frac{2\sqrt{2}}{3}$-$\frac{2\sqrt{5}}{15}$£©=$\frac{4\sqrt{5}}{3}$-$\frac{2\sqrt{2}}{3}$£®
×ÛÉÏËùÊö£¬µ±¡÷D1FQÓë¡÷AFQÖصþ²¿·ÖµÄͼÐÎÊÇÖ±½ÇÈý½ÇÐÎʱ£¬AQµÄ³¤Îª1+$\sqrt{5}$»ò$\frac{6\sqrt{5}}{5}$»ò$\frac{4\sqrt{5}}{3}$-$\frac{2\sqrt{2}}{3}$£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯ÊýµÄÓ¦Óá¢Ö±½ÇÈý½ÇÐεÄÐÔÖÊ¡¢×î¶ÌÎÊÌâ¡¢¶þÔªÒ»´Î·½³Ì×é¡¢¹´¹É¶¨ÀíµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»á¹¹½¨Ò»´Îº¯ÊýÀûÓ÷½³Ì×éÇó½»µã×ø±ê£¬Ñ§»á¹¹½¨¶þ´Îº¯Êý½â¾ö×îÖµÎÊÌ⣬ѧ»áÀûÓöԳƽâ¾ö×î¶ÌÎÊÌ⣬ѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬µÈÑüÈý½ÇÐÎABCµÄµ×±ß³¤Îª8cm£¬Ñü³¤Îª5cm£¬Ò»¶¯µãPÔÚµ×±ßÉÏ´ÓµãBÏòµãCÒÔ1cm/sµÄËÙ¶ÈÒƶ¯£¬
£¨1£©Çó¡÷ABCµÄÃæ»ý£»
£¨2£©ÇëÄã̽¾¿£ºµ±µãPÔ˶¯¼¸Ãëʱ£¬µãPÓ붥µãAµÄÁ¬ÏßPAÓëÑü´¹Ö±£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÎªÁ˽ÚÊ¡²ÄÁÏ£¬Ä³Ë®²úÑøÖ³»§ÀûÓÃË®¿âµÄÒ»½Ç¡ÏMON£¨¡ÏMON=135¡ã£©µÄÁ½±ßΪ±ß£¬ÓÃ×ܳ¤Îª120mµÄΧÍøÔÚË®¿âÖÐΧ³ÉÁËÈçͼËùʾµÄ¢Ù¢Ú¢ÛÈý¿éÇøÓò£¬ÆäÖÐÇøÓò¢ÙΪֱ½ÇÈý½ÇÐΣ¬ÇøÓò¢Ú¢ÛΪ¾ØÐΣ¬¶øÇÒËıßÐÎOBDGΪֱ½ÇÌÝÐΣ®
£¨1£©Èô¢Ù¢Ú¢ÛÕâ¿éÇøÓòµÄÃæ»ýÏàµÈ£¬ÔòOBµÄ³¤¶ÈΪ20m£»
£¨2£©ÉèOB=x£¬ËıßÐÎOBDGµÄÃæ»ýΪym2£¬
¢ÙÇóyÓëxÖ®µÄº¯Êý¹Øϵʽ£¬²¢×¢Ã÷×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£»
¢ÚÉè¢Ù¢Ú¢ÛÕâÈý¿éÇøÓòµÄÃæ»ý·Ö±ðΪS1¡¢S2¡¢S3£¬ÈôS1£ºS2£ºS3=3£º2£º1£¬ÇóGE£ºED£ºDCµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÔÚʵÊý$\frac{11}{7}$¡¢$-\sqrt{3}$¡¢$\root{3}{9}$¡¢0¡¢¦ÐÖУ¬ÎÞÀíÊýÓУ¨¡¡¡¡£©¸ö£®
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬¡ÏB¡¢¡ÏCµÄƽ·ÖÏßÏཻÓÚF£¬¹ýµãF×÷DE¡ÎBC£¬½»ABÓÚD£¬½»ACÓÚE£¬ÄÇôÏÂÁнáÂÛ£º¢Ù¡÷BDF¡¢¡÷CEF¶¼ÊǵÈÑüÈý½ÇÐΣ» ¢ÚDE=BD+CE£»¢Û¡÷ADEµÄÖܳ¤ÎªAB+AC£»¢ÜBD=CE£®ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¢Û¢ÜB£®¢Ù¢ÚC£®¢Ù¢Ú¢ÛD£®¢Ú¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬Õý·½ÐÎABCDµÄ±ß³¤Îªa£¬ACÓëBD½»ÓÚµãO£¬EΪODÖе㣬¶¯µãP´ÓµãO³ö·¢£¬ÑØÕÛO¡úE¡úA¡úB¡úOµÄ·¾¶Ô˶¯£¬»Øµ½µãOʱÔ˶¯Í£Ö¹£®ÉèµãPÔ˶¯µÄ·³Ì³¤Îªx£¬AP³¤Îªy£¬Ôòy¹ØÓÚxµÄº¯ÊýͼÏó´óÖÂÊÇ    £¨¡¡¡¡£©
A£®B£®
C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èçͼ£¬¡Ï1=¡ÏB£¬¡Ï2=138¡ã£¬Ôò¡ÏEDF=42¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®£¨1£©»¯¼òÇóÖµ£º2£¨m2n+mn2£©-2£¨m2n+1£©-2mn2-1£¬ÆäÖÐm=-2017£¬n=2018£®
£¨2£©Èçͼ£¬¡°¿ìµÝС¸ç¡±Æï³µ´Ó¿ìµÝ¹«Ë¾B³ö·¢£¬ÏÈÏòÎ÷ÆïÐе½´ïM´å£¬¼ÌÐøÏòÎ÷ÆïÐÐ10kmµ½´ïA´å£¬È»ºóÏò¶«ÆïÐе½´ïC´å£¬×îºó»Øµ½¿ìµÝ¹«Ë¾B£¬ÈôµãM¡¢N·Ö±ðΪAC¡¢BCµÄÖе㣬ÇÒÕâЩµØµã¶¼ÔÚÒ»ÌõÖ±ÏßÉÏ£®
¢ÙÈôC´åÓë¿ìµÝ¹«Ë¾BÏà¾à8km£¬ÔòN´åÓëM´åÏà¾à6km£»
¢Ú¡°¿ìµÝС¸ç¡±Ò»¹²ÆïÐÐÁ˶àÉÙkm£¿£¨ÒªÓÐ˵Ã÷¹ý³Ì£¬Ö»Ð´´ð°¸¸ø1·Ö£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®·Ö±ðÓôúÈëÏûÔª·¨ºÍ¼Ó¼õÏûÔª·¨½â·½³Ì×é$\left\{\begin{array}{l}{x+y=7}\\{5x+3y=31}\end{array}\right.$£¬²¢ËµÃ÷Á½ÖÖ·½·¨µÄÏàͬµã£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸