精英家教网 > 初中数学 > 题目详情

已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0). 求二次函数的解析式;

.

解析试题分析:根据点在曲线上,点的坐标满足方程的关系,将A(2,-3),B(-1,0)代入y=ax2+bx-3得方程组,求解即可.
试题解析:∵二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0),
,解得.
∴二次函数的解析式为.
考点:曲线上点的坐标与方程的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A.B.C,求ac的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数的图象经过点(4,3),(3,0).

(1)求b、c的值;
(2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象;
(3)该函数的图像经过怎样的平移得到的图像?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系xOy中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,4),D为OC的中点.

(1)求m的值;
(2)抛物线的对称轴与 x轴交于点E,在直线AD上是否存在点F,使得以点A、B、F为顶点的三角形与△ADE 相似?若存在,请求出点F的坐标,若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点G,使△GBC中BC边上的高为?若存在,求出点G的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数.
(1)求顶点坐标和对称轴方程;
(2)求该函数图象与x标轴的交点坐标;
(3)指出x为何值时,;当x为何值时,.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

二次函数的图象与x轴交于点A(-1, 0),与y轴交于点C(0,-5),且经过点D(3,-8).
(1)求此二次函数的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,抛物线经过点A的坐标为(m,m),点B的坐标为(n,-n),且经过原点O,连接OA、OB、AB,线段AB交y轴于点C.已知实数m,n(m<n)分别是方程x2-2x-3=0的两根.

(1)求m,n的值.
(2)求抛物线的解析式.
(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD,BD.当△OPC为等腰三角形时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数为常数,且.
(1)求证:不论为何值,该函数的图象与轴总有两个公共点;
(2)设该函数的图象的顶点为C,与轴交于A,B两点,当△ABC的面积等于2时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线y=2x2﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.

(1)写出以A,B,C为顶点的三角形面积;
(2)过点E(0,6)且与x轴平行的直线l1与抛物线相交于M、N两点(点M在点N的左侧),以MN为一边,抛物线上的任一点P为另一顶点做平行四边形,当平行四边形的面积为8时,求出点P的坐标;
(3)过点D(m,0)(其中m>1)且与x轴垂直的直线l2上有一点Q(点Q在第一象限),使得以Q,D,B为顶点的三角形和以B,C,O为顶点的三角形相似,求线段QD的长(用含m的代数式表示).

查看答案和解析>>

同步练习册答案