精英家教网 > 初中数学 > 题目详情
如图,点P是反比例函数y=
2
x
(x>0)的图象上的一个动点,PA⊥x轴于点A,延长AP至点B,使PB=PA,过点B作BC⊥y轴于点C,交反比例函数图象于点D.
(1)填空:S△AOP______S△COD(填“>“<”或“=”)
(2)当点P的位置改变时,四边形PODB的面积是否改变?说明理由.
(3)连接OB,交反比例函数y=
2
x
(x>0)的图象于点E,试求
OE
OB
的值.
(1)依题意设P(m,
2
m
),则B(m,
4
m
),D(
m
2
4
m
),
故S△AOP=
1
2
2
m
=1,S△COD=
1
2
×
m
2
×
4
m
=1,
即S△AOP=S△COD
故答案为:=;

(2)不改变.
理由:∵S四边形PODB=S矩形OABC-S△AOP-S△COD=m×
4
m
-1-1=2,
∴当点P的位置改变时,四边形PODB的面积总是2,不改变;

(3)设直线OB解析式为y=kx,将B(m,
4
m
)代入,得k=
4
m2

可知直线OB解析式为y=
4
m2
x,
联立
y=
2
x
y=
4
m2
x
,得
x=
2
m
2
y=
2
2
m
,即E(
2
m
2
2
2
m
),
OE
OB
=
2
2
m
4
m
=
2
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点C在反比例函数y=
k
x
的图象上,过点C作CD⊥y轴,交y轴负半轴于点D,且△ODC的面积是3.
(1)求反比例函数y=
k
x
的解析式;
(2)将过点O且与OC所在直线关于y轴对称的直线向上平移2个单位后得到直线AB,如果CD=1,求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图:在平面直角坐标系中,△ABC是等腰直角三角形,∠ACB=Rt∠,CA⊥x轴,垂足为点A.点B在反比例函数y1=
4
x
(x>0)
的图象上.反比例函数y2=
2
x
(x>0)
的图象
经过点C,交AB于点D,则点D的坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知A(-1,n),B(
1
2
,-2)是一次函数y=kx+b的图象和反比例函数y=
m
x
的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴交点C的坐标及△AOB的面积;
(3)求方程kx+b-
m
x
=0的解(请直接写出答案);
(4)在y轴上是否存在一点P,使三角形PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y=
k1
x
的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y=
k2
x
(x>0)的图象交于点D(n,-2).
(1)求k1和k2的值;
(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△ACE?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在反比例函数y=
1-k
x
的每一条曲线上,y都随着x的增大而减小,则k的值可以是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,A为y轴正半轴上一点,过A作x轴的平行线,交函数y=-
2
x
(x<0)的图象于B,交函数y=
6
x
(x>0)的图象于C,过C作y轴的平行线交BO的延长线于D.
(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
(3)在(2)的条件下,求四边形AODC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=-
1
3
x+2
的图象分别与x轴、y轴相交于A、B两点,点P为线段AB上一点,PC⊥x轴于点C,延长PC交反比例函数y=
k
y
(x>0)
的图象于点Q,且tan∠OAQ=
1
3
.连接OP、OQ,四边形OQAP的面积为6.
(1)求k的值;
(2)判断四边形OQAP的形状,并加以证明.

查看答案和解析>>

同步练习册答案