【题目】阅读,我们可以用换元法解简单的高次方程,解方程x4﹣3x2+2=0时,可设y=x2,则原方程可比为y2+3y+2=0,解之得y1=2,y2=1,当y1=2时,则x2=2,即x1=,x2=﹣;当y2=1时,即x2=1,则x1=1,x2=﹣1,故原方程的解为x1=,x2=﹣,x3=1,x4=﹣1,仿照上面完成下面解答:
(1)已知方程(2x2+1)2+2x2﹣3=0,设y=2x2+1,则原方程可化为_______.
(2)仿照上述解法解方程:(x2﹣2x)2﹣3x2+6x=0.
【答案】(1)y2+y﹣4=0;(2)x=2或x=0或x=﹣1或x=3.
【解析】
(1)利用完全平方公式可把原式变为(2x2+1)2+2x2+1﹣4=(2x2+1)2+(2x2+1)﹣4,然后用y代替式子中的2x2+1.
(2)(x2﹣2x)2﹣3x2+6x=0即(x2﹣2x)2﹣3(x2﹣2x)=0.可以把x2﹣2x当作整体,设x2﹣2x=y,原方程即可变形为关于y的方程,即可求得y的值,因而求得x的值.
(1)设y=2x2+1,
则原方程左边=(2x2+1)2+(2x2+1)﹣4=y2+y﹣4.
∴原方程可化为y2+y﹣4=0.
故答案为:y2+y﹣4=0.
(2)设x2﹣2x=y,
则原式左边=(x2﹣2x)2﹣3(x2﹣2x)=y2﹣3y;
∴y2﹣3y=0,
∴y(y﹣3)=0,
∴y=0或3.
当y=0时,则x2﹣2x=0,
∴x(x﹣2)=0,
∴x=2或0;
当y=3时,则x2﹣2x=3,
∴x2﹣2x﹣3=0,
解得x=﹣1或3.
故方程的解为x=3或x=2或x=0或x=﹣1.
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,AB=CE=2,连接BE,P为BE的中点,连接PD、AD
(1)为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系;
(2)如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)如图3,若∠ACD=45°,求△ACD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,一次函数y=x﹣1的图象与x轴,y轴分别交于点A,B,与反比例函数y=的图象交于点C,D,CE⊥x轴于点E,.
(1)求反比例函数的表达式与点D的坐标;
(2)以CE为边作ECMN,点M在一次函数y=x﹣1的图象上,设点M的横坐标为a,当边MN与反比例函数y=的图象有公共点时,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在学习“圆的对称性”时知道结论:垂直于弦的直径一定平分这条弦,请尝试解决问题:如图,在Rt△ACB中,∠ACB=90°,圆O是△ACB的外接圆.点D是圆O上一点,过点D作DE⊥BC,垂足为E,且BD平分∠ABE,
(1)判断直线ED与圆O的位置关系,并说明理由.
(2)若AC=12,BC=5,求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B是函数图象上关于原点对称的两点,且BC//x轴,AC//y轴,△ABC的面积记为S,则( )
A.S=2B.S=4C.S=8D.S=1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.
(1)求证:;
(2)当点P在射线AD上运动时,设PA=X,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C为⊙O上一点,点D在CO的延长线上,连接BD.已知BC=BD,AB=4.
(1)若BC=2,求证:BD是⊙O的切线;
(2)BC=3,求CD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com