精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)
分析:由四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,由勾股定理即可求得AB=BC=CD=AD,即可求得此四边形的周长,对角相等,以及此四边形的面积等于对角线乘积的一半.
解答:解:(1)∵AC与BD互相垂直平分于点O,
设AC=2a,BD=2b,
∴Rt△AOD中,AO=a,DO=b,
Rt△AOB中,AO=a,BO=b,
Rt△COD中,CO=a,DO=b,
Rt△COB中,CO=a,BO=b,
据勾股定理可得:AD=AB=BC=CD=
a2+b2

即:该四边形四边相等.

(2)由(1)可知:AD=AB=BC=CD,
∴可得CABCD=4AB,
即:该四边形的周长为边长四倍.

(3)由(1)可知;AD=AB=BC=CD,
∴∠ADO=∠ABO,∠CDO=∠CBO,
∴∠ADC=∠ABC,
同理:∠DAB=∠DCB;
即:该四边形的对角相等.

(4)由(1)可知:S△AOD=S△AOE=S△COE=S△COD=
1
2
ab,
且AC=2a,BD=2b,
∴S四边形ABCD=
1
2
ab×4=2ab.
即:该四边形的面积等于对角线乘积的一半.
点评:此题考查了菱形的性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案