精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知直线y=-
12
x+1
交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.
(1)直接写出点C和点D的坐标,C(
 
);D(
 
);
(2)求出过A,D,C三点的抛物线的解析式及对称轴;
(3)探索:过点E作平行于y轴的直线上是否存在点P,使△PBC为直角三角形?若存在,请求出P点坐标;若不存在,请说明理由.
分析:(1)先将A和点B的坐标得出和AB的长度,并分别得出直线AD和BC所在的直线方程,利用正方形的性质即可分别得出C和点D的坐标;
(2)令x=0,即可得出y的值,从而可得出A的坐标,结合(1),可知C和D点的坐标,设出抛物线的解析式,将三个点的坐标分别代入即可得出抛物线的方程;同时即可得出抛物线的对称轴;
(3)若使△PBC为直角三角形,需分三种情况来讨论,①当∠CBP=90°时;②当∠BCP=90°时;③当∠CPB=90°时;分别讨论着三种情况,即可得出①和②两种情况有,存在点P,分别为(4,-1)和(4,
3
2
),③不存在;
解答:解:(1)C(3,2),D(1,3)

(2)把x=0代入y=-
1
2
x+1
得,y=1
∴A点坐标为(0,1)
设二次函数的解析式为y=ax2+bx+c(a≠0).
把点A(0,1),C(3,2),D(1,3)代入得
c=1
9a+3b+c=2
a+b+c=3
,(2分)
解,得
a=-
5
6
b=
17
6
c=1

∴二次函数的解析式为y=-
5
6
x2+
17
6
x+1

对称轴为:直线x=
17
10


(3)①当∠CBP=90°时,P(4,-1)
②当∠BCP=90°时P(4,
3
2

③当∠CPB=90°时,以BC为直径的圆与直线x=4相离,
即直线与圆无交点,则不存在.(或用勾股定理来算无解).
点评:此题考查了抛物线和一次函数解析式的确定、三角形的有关知识等重要知识点,本题难度不大,在分类讨论的时候,要考虑问题要全面,做到不重不漏.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE.
(1)写出∠AOC与∠BOD的大小关系:
相等
,判断的依据是
等角的补角相等

(2)若∠COF=35°,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,已知直线l1∥l2,AB⊥CD,∠1=30°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线l1y=
2
3
x+
8
3
与直线 l2:y=-2x+16相交于点C,直线l1、l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•怀化)如图,已知直线a∥b,∠1=35°,则∠2=
35°
35°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线m∥n,则下列结论成立的是(  )

查看答案和解析>>

同步练习册答案