精英家教网 > 初中数学 > 题目详情
如图,PA是⊙O的直径,PC是⊙O的弦,过AC弧的中点H作PC的垂线交PC的延长线于点B.若HB=6cm,BC=4cm,则⊙O的直径为(  )
A.2
13
cm
B.3
17
cm
C.13cmD.6
13
cm

连接PH,OH,
∵H是
AC
的中点,
∴∠HPC=∠APH,∠AOH=∠APC,
∴OHBC,
即OH⊥BH,
∴HB是⊙O的切线;
∵PB是⊙O的割线,HB=6cm,BC=4cm,
∴HB2=BC•BP,
∴36=4BP,
∴BP=9,
∴PH=
BP2+BH2
=
92+62
=
117

∵在Rt△BPH与Rt△HPA中,∠HPC=∠APH,
∴Rt△BPHRt△HPA,
BP
PH
=
PH
AP

∴AP=
PH2
BP
=
(
117
)
2
9
=13cm;
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,AB,AC与⊙O相切于点B,C,点P是圆上异于B、C的一动点,则∠BPC的度数是(  )
A.65°B.115°C.65°或115°D.130°或50°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

两同心圆的半径分别是10和6,大圆的弦AB长16.AB与小圆的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠A=30°.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的半径OC与直径AB垂直,点P在OB上运动(点O、B除外),CP的延长线交⊙O于点D,在OB的延长线上取点E,使ED=EP.
(1)求证:ED是⊙O的切线;
(2)当OC=2,ED=2
3
时,求∠E的正切值tanE和图中阴影部分的面积S(结果保留无理数).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:点F是BD中点;
(2)求证:CG是⊙O的切线;
(3)若FB=FE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,过点B的切线与CA的延长线相交于点E,且∠BEC=90°,点D在OA的延长线上,AO⊥BC,∠ODC=30°.
(1)求证:DC为⊙O的切线.
(2)若CA=6,求DC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点P是⊙O直径AB的延长线上一点,PC切⊙O于点C,已知OB=3,PB=2.则PC等于(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案