精英家教网 > 初中数学 > 题目详情
如图,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,垂足为D.

(1)若AD=9,BC=16,求BD的长;
(2)求证:AB2•BC=CD2•AD.
(1)12,(2)证明见解析.

试题分析:(1)先根据平行线的性质得出∠ADB=∠DBC,再由∠A=90°,BD⊥CD可知∠A=∠BDC=90°,故可得出△ABD∽△DCB,由相似三角形的对应边成比例即可得出结论;
(2)由(1)可知△ABD∽△DCB,再根据相似三角形面积的比等于相似比的平方即可得出结论.
试题解析::(1)∵AD∥BC,
∴∠ADB=∠DBC,
∵∠A=90°,BD⊥CD,
∴∠A=∠BDC=90°,
∴△ABD∽△DCB,

即BD2=AD•BC=9×16=144,
∴BD=12;
(2)∵由(1)可知△ABD∽△DCB,△ABD与△DCB均为直角三角形,

∴AB2•BC=CD2•AD.
考点:1.相似三角形的判定与性质;2.直角梯形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形中,分别是边上的点,并延长交的延长线于点

(1)求证:
(2)若正方形的边长为4,求的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,DE∥BC,EF∥AB.证明:△ADE∽△EFC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在Rt△ABC和Rt△DEF中,∠ C=∠ F=90°,当AC=3,AB=5,DE=10,EF=8时,Rt△ABC和Rt△DEF是  的.(填“相似”或者“不相似”)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一张矩形报纸ABCD的长AB=a,宽BC=b,E,F分别是AB,CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽的比等于矩形ABCD的长与宽的比,则a:b等于(           )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是(   )
A.a=bB.a=2bC.a=2bD.a=4b

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果,那么=     

查看答案和解析>>

同步练习册答案