精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AD、BE分别是BC、AC边上的高,AF、BG分别是△ABC中∠BAC,∠ABC的角平分线,∠C=50°,给出如下四个结论:
①∠3=50°,②∠4=115°,③∠1=∠2,④
AC
BC
=
AD
BE

其中正确的结论是(  )
分析:求出∠ADC=∠BEC=90°,根据四边形内角和定理求出∠DOE,即可求出∠3,求出∠CAB+∠ABC,求出
1
2
(∠CAB+ABC),根据三角形内角和定理即可求出∠4;求出∠CAD=∠CBE=40°,求出∠1=
1
2
∠CAB-40°,∠2=
1
2
∠ABC-40°,即可判断③;根据三角形面积公式即可判断④.
解答:解:∵AD⊥BC,BE⊥AC,
∴∠BEC=∠ADC=90°,
∵∠C=50°,
∴∠DOE=360°-90°-90°-50°=130°,
∴∠3=180°-130°=50°,∴①正确;
∵∠C=50°,
∴∠ABC+∠BAC=180°-50°=130°,
∵AF、BG分别平分∠BAC、∠ABC,
∴∠FAB=
1
2
∠CAB,∠ABG=
1
2
∠ABC,
∴∠FAB+∠ABG=
1
2
(∠CAB+∠ABC)=
1
2
×130°=65°,
∴∠4=180°-(∠ABG+∠BAF)=180°-65°=115°,∴②正确;
∵AD⊥BC,BE⊥AC,
∴∠AEO=∠BDO=90°,
∵∠3=∠BOD=50°,
∴∠CBE=∠CAD=90°-50°=40°,
∵BG、AF分别平分∠CAB、∠ABC,
∴∠CAF=
1
2
∠CAB,∠CBG=
1
2
∠CBA,
∴∠2=
1
2
∠CBA-∠CBE=
1
2
∠CBA-40°,
同理∠1=
1
2
∠BAC-40°,
∵根据已知不能推出∠CAB=∠ABC,
∴不能推出∠1=∠2,∴③错误;
在△ABC中,由三角形面积公式得:
1
2
BC×AD=
1
2
AC×BE,
AC
BC
=
AD
BE
,∴④正确;
故选D.
点评:本题考查三角形内角和定理的应用,主要考查学生运用定理进行推理和计算的能力,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案