【题目】如图所示:一副三角板如图放置,等腰直角三角板ABC固定不动,另一块三角板的直角顶点放在等腰直角三角形的斜边中点D处,且可以绕点D旋转,在旋转过程中,两直角边的交点G、H始终在边AB、BC上.
在旋转过程中线段BG和CH大小有何关系?证明你的结论.
若,在旋转过程中四边形GBHD的面积是否改变?若不变,求出它的值;若改变,求出它的取值范围.
若交点G、H分别在边AB、BC的延长线上,则中的结论仍然成立吗?请画出相应的图形,直接写出结论.
【答案】 BG=CH,证明见解析;在旋转过程中四边形GBHD的面积不变,; 见解析.
【解析】
连接BD,根据等腰直角三角形的性质,得,,,,由,,推出后,结合,即可推出≌,根据全等三角形的性质可得;
首先根据题意求出,然后通过求证≌,由的结论,即可推出,再根据,,推出,即得,,便可确定在旋转过程中四边形GBHD的面积不变;
连接BD后,首先通过余角的性质推出,再根据,推出,即可推出和,便可得.
和CH为相等关系,
如图1,连接BD,
等腰直角三角形ABC,D为AC的中点,
,,,
,
,
,
,
在和中,
,
≌,
,
,
,
等腰直角三角形ABC,D为AC的中点,
,,,
,
,
,
,
在和中,
,
≌,
,
,,
,
,
在旋转过程中四边形GBHD的面积不变,
当三角板DEF旋转至图2所示时,的结论仍然成立,
如图2,连接BD,
,,,
,,
,
等腰直角三角形ABC,
,
,
在和中,
,
≌,
.
科目:初中数学 来源: 题型:
【题目】甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.甲到达目的地时,乙距目的地还有_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明早晨从家里出发匀速步行去上学,小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t分钟时,他所在的位置与家的距离为s千米,且s与t之间的函数关系的图象如图中的折线段OA﹣AB所示.
(1)试求折线段OA﹣AB所对应的函数关系式;
(2)请解释图中线段AB的实际意义;
(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离s(千米)与小明出发后的时间t(分钟)之间函数关系的图象.(友情提醒:请对画出的图象用数据作适当的标注)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,l1表示某公司一种产品一天的销售收入与销售量的关系,l2表示该公司这种产品一天的销售成本与销售量的关系.
(1)x=1时,销售收入= 万元,销售成本= 万元,盈利(收入﹣成本)= 万元;
(2)一天销售 件时,销售收入等于销售成本;
(3)l2对应的函数表达式是 ;
(4)你能写出利润与销售量间的函数表达式吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形以1厘米∕秒的速度向右沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S平方厘米.完成下列问题:
(1)平移1.5秒时,S为________平方厘米;
(2)当2≤t≤4时,求小正方形的一条对角线扫过的图形的面积;
(3)当S为2平方厘米时,求小正方形平移的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.
在图中画出与关于直线l成轴对称的;
三角形ABC的面积为______;
以AC为边作与全等的三角形,则可作出______个三角形与全等;
在直线l上找一点P,使的长最短.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EHEA;
(3)若⊙O的半径为 ,sinA= ,求BH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.
(1)求证:DE=DF,DE⊥DF;
(2)连接EF,若AC=10,求EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com