【题目】已知点I为△ABC的内心
(1) 如图1,AI交BC于点D,若AB=AC=6,BC=4,求AI的长
(2) 如图2,过点I作直线交AB于点M,交AC于点N
① 若MN⊥AI,求证:MI2=BM·CN
② 如图3,AI交BC于点D.若∠BAC=60°,AI=4,请直接写出的值
【答案】(1)AI的长是;
(2)①证明见解析;②
【解析】试题分析:(1)、根据内心的性质得出AD为线段BC的中垂线,然后根据Rt△BID的勾股定理得出答案;(2)、首先得出△AMI和△ANI全等,从而得出∠AMN=∠ANM,然后连接BI和CI,根据角度之间的关系得出△BMI和△INC相似,则NI2=BM·CN,根据NI=MI得出答案;(3)、过点N作NG∥AD交MA的延长线于G,则∠ANG=∠AGN=30° ∴AN=AG,NG=然后根据平行线性质得出,然后代入得出答案.
试题解析:(1)
(2) ∵I为△ABC的内心 AI⊥MN ∴△AMI≌△ANI(ASA) ∴∠AMN=∠ANM
连接BI、CI ∴∠BMI=∠CNI
设∠BAI=∠CAI=α,∠ACI=∠BCI=β ∴∠NIC=90°-α-β
∵∠ABC=180°-2α-2β ∴∠MBI=90°-α-β ∴△BMI∽△INC
∴ ∴NI2=BM·CN ∵NI=MI ∴MI2=BM·CN
(3) 过点N作NG∥AD交MA的延长线于G ∴∠ANG=∠AGN=30° ∴AN=AG,NG=
∵AI∥NG ∴ ∴,得
科目:初中数学 来源: 题型:
【题目】我们用字母a表示一个有理数,试判断下列说法是否正确,若不正确,请举出反例.
(1)a一定表示正数,﹣a一定表示负数;
(2)如果a是零,那么﹣a就是负数;
(3)若﹣a是正数,则a一定为非正数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一长方体的宽为b(定值),长为x(x>b),高为h,体积为V,则V=bxh,其中变量是( )
A. x B. h C. V D. x、h、V均为变量
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com