【题目】如果a是一个三位数,现在把1放在它的右边,得到一个四位数,这个四位数是( )
A. 1000a+1 B. 100a+1 C. 10a+1 D. a+1
科目:初中数学 来源: 题型:
【题目】如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )
A.SAS B.ASA C.AAS D.SSS
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:①两点之间的所有连线中,线段最短;②两点之间的距离是两点间的线段;③过直线外一点有且仅有一条直线与己知直线平行;④相等的角是对顶角.其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D .4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:
将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.
(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;
(2)你认为这个规则公平吗?请说明理由.
考点:游戏公平性;列表法与树状图法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题8分)如下图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.
(1)△ABC的面积为 ;
(2)将△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B',补全△A′B′C′;
(3)在图中画出△ABC的高CD;
(4)若连接, ,则这两条线段之间的关系是 ;
(5)能使S△ABC=S△QBC的格点Q,共有 个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富群众文化生活,某县城区已经整体转换成了数字电视.目前该县广播电视信息网络公司正在对乡镇进行数字电视改装.公司现有400户申请了但还未安装的用户,此外每天还有新的用户申请.已知每个安装小组每天安装的数量相同,且每天申请安装的用户数也相同,公司若安排3个安装小组同时安装,则50天可以安装完所有新、旧申请用户;若公司安排5个安装小组同时安装,则10天可以安装完所有新,旧申请用户.
(1)求每天新申请安装的用户数及每个安装小组每天安装的数量;
(2)如果要求在8天内安装完所有新、旧申请用户,但前3天只能派出2个安装小组安装,那么最后几天至少需要增加多少个安装小组同时安装,才能完成任务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,
(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.
(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,
如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________
(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com