已知,如图1,矩形ABCD中,AD=6,DC=8,矩形EFGH的三个顶点E、G、H分别在矩形ABCD的边ABCD的边AB、CD、DA上,AH=2,连接CF.
(1)如图2,当四边形EFGH为正方形时,求CF的长和△FCG的面积;
(2)如图1,设AE=x,△FCG的面积=y,求y与x之间的函数关系式与y的最大值.
(3)当△CG是直角三角形时,求x和y值.
(1),6;(2)y=8?,7;(3)x="2,6," 4+2 或4-2,y=4,, 或4-2,
解析试题分析:(1)要求CF的长和△FCG的面积,需先证△AEH≌△DHG≌△MGF
(2)先证△AEH∽△DHG,然后根据比例关系,求出y与x之间的函数关系式与y的最大值;
(3)由画图可知∠FGC和∠GCF都不能为直角,当∠GFC=90°时,E、F、C三点在一条直线上,所以△AEH∽△BCE,根据相似三角形的对应线段成比例可求出解.
试题解析:(1)作FM⊥CD于M,
可证△AEH≌△DHG≌△MGF,
∴MG=DH=6-2=4,CG=6,CM=2,DG=FM=2,
∴CF=
∴△FCG的面积=×6×2=6;
(2)可证△AEH∽△DHG,
∴,即,
∴DG=,
∴y=△FCG的面积=×(8?)×2=8?,
∵8?>0,x≤8,
∴1<x≤8,
∴当x=8时,y的最大值为7.
(3)当∠GFC=90°时,E、F、C三点在一条直线上,
∴△AEH∽△BCE
∴ ,即 ,
解得:x=2或x=6.
∴y=4或y=.
当∠GCF=90°时,此时F点正好落在边BC上,
则△HAE∽△GDH,
则 ,
解得:x=4+2 或4-2,
对应的y=4+2 或4-2.
当∠CGF=90°时,C,G,H共线,所以不可能;
考点: 1.矩形的性质;2.相似三角形的判定与性质.
科目:初中数学 来源: 题型:解答题
如图,在△PAB中,点C、D在边AB上,PC=PD=CD,∠APB=120°.
(1)试说明△APC与△PBD相似.
(2)若CD=1,AC=x,BD=y,请你求出y与x之间的函数关系式.
(3)小明猜想:若PC=PD=1,∠CPD=α,∠APB=β,只要α与β之间满足某种关系式,问题(2)中的函数关系式仍然成立.你同意小明的观点吗?如果你同意,请求出α与β所满足的关系式;若不同意,请说明理曲.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在□ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.
(1)当t为何值时,∠AMN=∠ANM?
(2)当t为何值时,△AMN的面积最大?并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离,颖颖与楼之间的距离(,,在一条直线上),颖颖的身高,亮亮蹲地观测时眼睛到地面的距离.你能根据以上测量数据帮助他们求出住宅楼的高度吗?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,垂足为D.
(1)若AD=9,BC=16,求BD的长;
(2)求证:AB2•BC=CD2•AD.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在梯形ABCD中,AB∥CD,∠DAB=90°,AC⊥BC.
(1)求证:△ADC∽△BCA;
(2)若AB=9cm,AC=6cm,求梯形ABCD中位线的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:如图,在⊙O中,直径AB⊥CD于点E,连接BC.
(1)线段BC、BE、AB应满足的数量关系是 ;
(2)若点P是优弧上一点(不与点C、A、D重合),连接BP与CD交于点G.
请完成下面四个任务:
①根据已知画出完整图形,并标出相应字母;
②在正确完成①的基础上,猜想线段BC、BG、BP应满足的数量关系是 ;
③证明你在②中的猜想是正确的;
④点P′恰恰是你选择的点P关于直径AB的对称点,那么按照要求画出图形后在②中的猜想仍然正确吗? ;(填正确或者不正确,不需证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com