精英家教网 > 初中数学 > 题目详情
(2012•东营)在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2
7
2
3
2
),那么点An的纵坐标是
3
2
n-1
3
2
n-1

分析:利用待定系数法求一次函数解析式求出直线的解析式,再求出直线与x轴、y轴的交点坐标,求出直线与x轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到各点的纵坐标的规律.
解答:解:∵A1(1,1),A2
7
2
3
2
)在直线y=kx+b上,
k+b=1
7
2
k+b=
3
2

解得
k=
1
5
b=
4
5

∴直线解析式为y=
1
5
x+
4
5

如图,设直线与x轴、y轴的交点坐标分别为N、M,
当x=0时,y=
4
5

当y=0时,
1
5
x+
4
5
=0,解得x=-4,
∴点M、N的坐标分别为M(0,
4
5
),N(-4,0),
∴tan∠MNO=
MO
NO
=
4
5
4
=
1
5

作A1C1⊥x轴与点C1,A2C2⊥x轴与点C2,A3C3⊥x轴与点C3
∵A1(1,1),A2
7
2
3
2
),
∴OB2=OB1+B1B2=2×1+2×
3
2
=2+3=5,
tan∠MNO=
A3C3
NC3
=
A3C3
4+5+B2C3
=
1
5

∵△B2A3B3是等腰直角三角形,
∴A3C3=B2C3
∴A3C3=
9
4
=(
3
2
2
同理可求,第四个等腰直角三角形A4C4=
27
8
=(
3
2
3
依此类推,点An的纵坐标是(
3
2
n-1
故答案为:(
3
2
n-1
点评:本题是对一次函数的综合考查,主要利用了待定系数法求函数解析式,等腰直角三角形斜边上的高线就是斜边上的中线,直角三角形斜边上的中线等于斜边的一半,以及正切的定义,规律性较强,注意指数与点的脚码相差1.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•东营)小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x、乙立方体朝上一面朝上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=
6
x
上的概率为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•东营)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•东营)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的
1
4
,那么点B′的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•东营)已知抛物线y=
3
2
x2+bx+6
3
经过A(2,0).设顶点为点P,与x轴的另一交点为点B.
(1)求b的值,求出点P、点B的坐标;
(2)如图,在直线 y=
3
x上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.

查看答案和解析>>

同步练习册答案