精英家教网 > 初中数学 > 题目详情
19.如图,已知A、B两市相距150千米,分别从A、B处测得某风景区中心C处的方向角如图所示,风景区区域是以C为圆心,52千米为半径的圆,tanα≈1.63,tanβ≈1.37.有关部门要设计修建连接AB两市的高速公路,问连接AB的高速公路是否穿过风景区,请说明理由.

分析 首先过C作CD⊥AB与D,由题意得∠ACD=α,∠BCD=β,在Rt△ACD中,AD=CD•tanα,在Rt△BCD中,BD=CD•tanβ,继而可得CD•tanα+CD•tanβ=AB,则可求得CD的长,再进行比较,即可得出高速公路是否穿过风景区.

解答 解:AB穿过风景区,理由如下:
如图,过C作CD⊥AB于D,
由题意得:∠ACD=α,∠BCD=β,
则AD=CD•tanα,BD=CD•tanβ,
∵AD+BD=AB,
∴CD•tanα+CD•tanβ=AB,
∴CD=$\frac{AB}{tanα+tanβ}$=$\frac{150}{1.63+1.37}$=50(千米),
∵CD=50<52,
∴高速公路AB穿过风景区.

点评 此题考查了方向角问题,能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,以?ABCD的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数y=$\frac{k}{x}$的图象交BC于D,连接AD.
(1)求过点A的反比例函数和直线BC的解析式;
(2)求四边形AOCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.温州外国语学校在进行校园二次美化工程,一面墙上有一个矩形的门洞,如图,已知矩形的高为2米,宽为0.8米,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,圆弧所在的圆的半径长为$\frac{2\sqrt{29}}{5}$米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.$\sqrt{3-x}$有意义,x的取值范围是x≤3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,AB是半圆O的直径,D是$\widehat{AB}$上一点,C是$\widehat{AD}$的中点,过点C作AB的垂线,交AB于E,与过点D的切线交于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:
①∠BAD=∠ABC;
②GP=GD;
③点P是△ACQ的外心.
其中正确结论是②③(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知在一个不透明的口袋里装有形状、大小相同的红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是$\frac{1}{3}$,那么口袋里黄球的个数为6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,一次函数y=kx+b与反比例函数y=$\frac{m}{x}$(m≠0)的图象交于A(6,1),B(a,6)两点.
(1)求两个函数的解析式;
(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数的值大于反比例函数的值?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,将一个菱形的纸片剪成4个完全相同的小菱形,共得到4个菱形,再将其中1个小菱形剪成4个完全相同的更小的菱形,共得到7个菱形,…,按照此规律,依次操作减剪下去,则第n次剪,会得到菱形的个数为(  )
A.2n个B.(2n+1)个C.3n个D.(3n+1)个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.
(1)求抛物线的顶点坐标;
(2)横、纵坐标都是整数的点叫做整点.
①当m=1时,求线段AB上整点的个数;
②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.

查看答案和解析>>

同步练习册答案