精英家教网 > 初中数学 > 题目详情
如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.

(1)求证:CD为⊙O的切线;
(2)若CD=2AD,⊙O的直径为10,求线段AC的长.
(1)证明见解析;(2)6.

试题分析:(1)要证CD为⊙O的切线,只要证CD垂直于对切点的半径,故作辅助线:连接OC,由三角形三个内角和为180°的性质和等腰三角形的判定和性质,即能证出∠DCO =90°,从而得证;
(2)要求AB的长,就要考虑它是三角形中的线段或与三角形中的线段有关系,根据垂径定理,只要作OF⊥AB,即有AB=2AF,故只要求出AF即可,由勾股定理和等量代换即可求得.
试题解析:(1)如图,连接OC,
∵点C在⊙O上,OA=OC,∴∠OCA=∠OAC.
∵CD⊥PA,∴∠CDA=90°.∴∠CAD+∠DCA=90°.
∵AC平分∠PAE,∴∠DAC=∠CAO.
∴∠DCO=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC="90°."
又∵点C在⊙O上,OC为⊙O的半径,∴CD为⊙O的切线.
(2)如图,过O作OF⊥AB,垂足为F,∴∠OCA=∠CDA=∠OFD=90°.
∴四边形OCDF为矩形,∴OC=FD,OF=CD.
∵CD=2AD,设AD=x,则OF=CD=2x,
∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x.
在Rt△AOF中,由勾股定理得.
,化简得:,解得(舍去).
∴AD="2," AF=5-2=3.
∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的直线,垂足为D,且AC平分∠BAD.

(1)求证:CD是⊙O的切线;
(2)若AC=,AD=4,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点C在以AB为直径的半圆O上,以点A为旋转中心,以∠β(0°<β<90°)为旋转角度将B旋转到点D,过点D作DE⊥AB于点E,交AC于点F,过点C作圆O的切线交DE于点G。

(1)求证:∠GCA=∠OCB;
(2)设∠ABC=m°,求∠DFC的值;
(3)当G为DF的中点时,请探究∠β与∠ABC的关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O直径AB垂直于弦CD,垂足E是OB的中点,CD=6cm,则直径AB=    cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知两圆的半径是方程x2-7x+12=0的两根,圆心距为8,那么这两个圆的位置关系是
A.内切B.外离C.相交D.外切

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是
A.第①块;B.第②块;C.第③块;D.第④块.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为(    )
A.48cm2B.48πcm2C.60πcm2D.120πcm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,C是⊙O上一点,O为圆心,若∠C=40°,则∠AOB为(  )
A.20°B.40°C.80°D.160°

查看答案和解析>>

同步练习册答案