精英家教网 > 初中数学 > 题目详情
图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?
建立平面直角坐标系如图:

则抛物线顶点C坐标为(0,2),设抛物线解析式y=ax2+2,将A点坐标(-2,0)代入,可得:0=4a+2,
解得:a=-0.5,
故抛物线解析式为y=-0.5x2+2,
当水面下降1米,通过抛物线在图上的观察可转化为:
当y=-1时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,
将y=-1代入抛物线解析式得出:-1=-0.5x2+2,
解得:x=±
6

所以水面宽度为2
6
米,
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知如图,二次函数y=ax2+bx+c的图象过A、B、C三点
(1)观察图象写出A、B、C三点的坐标;
(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,已知正方形AOBC的边长为3,A、B两点分别在y轴和x轴的正半轴上,以D(0,1)为旋转中心,将DB逆时针旋转90°,得到线段DE,抛物线以点E为顶点,且经过点A.

(1)求抛物线解析式并判断点B是否在抛物线上;
(2)如图②,判断直线AE与正方形AOBC的外接圆的位置关系,并说明理由;
(3)若在抛物线上有点P,在抛物线的对称轴上有点Q,使得以O、B、P、Q为顶点的四边形是平行四边形,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2-2mx+m2-1.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2-ax+a2-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.
(1)求a的值;
(2)当四边形ODPQ为矩形时,求这个矩形的面积;
(3)当四边形PQBC的面积等于14时,求t的值.
(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2-2ax+c与y轴交于点C,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且OC=3OA.点E为线段BC上的动点(点E不与点B,C重合),以E为顶点作∠OEF=45°,射线ET交线段OB于点F.
(1)求出此抛物线函数表达式,并直接写出直线BC的解析式;
(2)求证:∠BEF=∠COE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)点P为抛物线的对称轴与直线BC的交点,点M在x轴上,点N在抛物线上,是否存在以点A、M、N、P为顶点的平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙M与y轴的正半轴相切于点C,与x轴交于A(x1,0)、B(x2,0)两点,且x2>x1>0,抛物线y=
1
2
(x2-5x+2m)经过A、B、C三点.
(1)求m的值;
(2)求sin∠AMB的值;
(3)在图中的曲线上是否存在点P,使以P、A、C为顶点的三角形与△COA相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,有长24米的篱笆,一面利用墙(墙的最大长度为10米),围成中间有一道篱笆的长方形花圃.设花圃的边AB长为x,花圃的面积为s米2
(1)请求出s与x的函数关系式.
(2)按照题中要求,所围的花圃面积能否是48米2?若能,求出的x值;若不能,请说明理由.
(参考公式:二次函数y=ax2+bx+c=0,当x=-
b
2a
时,y最大(小)值=
4ac-b2
4a

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

据统计每年由于汽车超速行驶而造成的交通事故是造成人员死亡的主要原因之一.行驶中的汽车,在刹车后由于惯性的原因,还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140千米/时),对这种汽车的刹车距离进行测试,测得的数据如下表:
刹车时车速(千米/时)051015202530
刹车距离(米)00.10.30.611.52.1
(1)在如图所示的直角坐标系中以车速为x轴,以刹车距离为y轴描出这些数据所表示的点,并用光滑的曲线连接这些点,得到某函数的大致图象.
(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式.
(3)一辆该型号的汽车在国道上发生了交通事故,现场测得刹车距离为46.5米,请推测刹车时速度是多少?请问在事故发生时,汽车是否超速行驶?

查看答案和解析>>

同步练习册答案