精英家教网 > 初中数学 > 题目详情
4.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一部分多项式,形式如下:
+(a-3b)2=2a2+5b2
(1)求所捂的多项式;
(2)当a=-2,b=$\sqrt{5}$时,求所捂的多项式的值.

分析 (1)根据题意列出关系式,去括号合并即可得到结果;
(2)将a与b的值代入计算即可求出多项式的值.

解答 解:(1)原式=(2a2+5b2)-(a-3b)2=2a2+5b2-a2+6ab-9b2=a2+6ab-4b2
(2)当a=-2,b=$\sqrt{5}$时,原式=4-12$\sqrt{5}$-20=-16-12$\sqrt{5}$.

点评 此题考查了整式的混合运算-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.我校对全部900名学生就校园安全知识的了解程度,采用随机抽样调查的方式进行调查,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有60人,条形统计图中“了解”部分所对应的人数是5人;
(2)扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;
(3)若没有达到“了解”或“基本了解”的同学必须重新接受安全教育. 请根据上述调查结果估计我校学生中必须重新接受安全教育的总人数大约为600人;
(4)若从对校园安全知识达到“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请直接写出恰好抽到1个男生和1个女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.有一种用“☆”定义的新运算:对于任意实数a,b都有a☆b=b2+a.例如7☆4=42+7=23.
(1)已知m☆2的结果是6,则m的值是多少?
(2)将两个实数n和n+2用这种新定义“☆”加以运算,结果为4,则n的值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是72km/h.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.
(1)求证:AC平分∠BAE;
(2)若AC=2CE=6,求⊙O的半径;
(3)请探索:线段AD,BD,CD之间有何数量关系?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点C,若AC•AB=12,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,△ABC内接于⊙O,AD平分∠BAC交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.
(1)试判断DE与⊙O的位置关系,并证明你的结论;
(2)若∠E=60°,⊙O的半径为5,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.先化简(1-$\frac{2}{a+1}$)÷$\frac{{a}^{2}-2a+1}{{a}^{2}+a}$,再从$\sqrt{2a-1}$有意义的范围内选取一个整数作为a的值代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图所示,长方形ABCD中,点E为AD边上的一点,连接BD,CE相交于点F,三角形EFD、三角形DFC的面积分别10,25平方厘米.
(1)求三角形BEF的面积;
(2)求四边形ABFE的面积.

查看答案和解析>>

同步练习册答案