精英家教网 > 初中数学 > 题目详情
1.(1)操作发现:
在△ABC中,AB=AC,∠BAC=90°,D在线段BC上(不与点B重合),连接AD,将线段AD绕A点逆时针旋转90°得到AE,连接EC,如图①所示,请直接写出线段CE和BD的位置关系和数量关系.
(2)猜想论证:
在(1)的条件下,当D在线段BC的延长线上时,请你在图②中画出图形并判断(1)中的结论是否成立,并证明你的判断.
(3)拓展延伸:
如图③,若AB≠AC,∠BAC≠90°,点D在线段BC上运动,试探究:当锐角∠ACB等于45度时,线段CE和BD之间的位置关系仍成立(点C、E重合除外)?此时若作DF⊥AD交线段CE于点F,且当AC=3$\sqrt{2}$时,请直接写出线段CF的长的最大值是$\frac{3}{4}$.

分析 (1)只要证明△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.
(2)结论不变.证明的方法与(1)一样.
(3)①当锐角∠ACB=45°时,CE⊥BD.过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,
②由Rt△AMD∽Rt△DCF,得$\frac{MD}{CF}$=$\frac{AM}{DC}$,由此构建二次函数,再利用二次函数即可求得CF的最大值.

解答 解:(1)CE=BD,CE⊥BD;
理由:如图①中,

∵AB=AC,∠BAC=90°,
∴线段AD绕点A逆时针旋转90°得到AE,
∴AD=AE,∠BAD=∠CAE,
∴△BAD≌△CAE,
∴CE=BD,∠ACE=∠B,
∴∠BCE=∠BCA+∠ACE=90°,
∴线段CE,BD之间的位置关系和数量关系为:CE=BD,CE⊥BD;

(2)结论:(1)中的结论仍然成立.理由如下:
如图②中,

∵线段AD绕点A逆时针旋转90°得到AE,
∴AE=AD,∠DAE=90°,
∵AB=AC,∠BAC=90°
∴∠CAE=∠BAD,
∴△ACE≌△ABD,
∴CE=BD,∠ACE=∠B,
∴∠BCE=90°,
所以线段CE,BD之间的位置关系和数量关系为:CE=BD,CE⊥BD;

(3)①结论:当锐角∠ACB=45°时,CE⊥BD.理由如下:
如图③中,过A作AM⊥BC于M,EN⊥AM于N,

∵线段AD绕点A逆时针旋转90°得到AE,
∴∠DAE=90°,AD=AE,
∴∠NAE=∠ADM,
易证得Rt△AMD≌Rt△ENA,
∴NE=AM,
∵∠ACB=45°,
∴△AMC为等腰直角三角形,
∴AM=MC,
∴MC=NE,
∵AM⊥BC,EN⊥AM,
∴NE∥MC,
∴四边形MCEN为平行四边形,
∵∠AMC=90°,
∴四边形MCEN为矩形,
∴∠DCF=90°,
∴EC⊥BD.

②∵Rt△AMD∽Rt△DCF,
∴$\frac{MD}{CF}$=$\frac{AM}{DC}$,
设DC=x,
∵∠ACB=45°,AC=3 $\sqrt{2}$,
∴AM=CM=3,MD=3-x,
∴$\frac{3-x}{CF}$=$\frac{3}{x}$,
∴CF=-$\frac{1}{3}$x2+x=-$\frac{1}{3}$(x-$\frac{3}{2}$)2+$\frac{3}{4}$,
∵-$\frac{1}{3}$<0,
∴当x=1.5时,CF有最大值,最大值为$\frac{3}{4}$.
故答案为45,$\frac{3}{4}$;

点评 本题考查三角形综合题、旋转变换、等腰直角三角形的性质、全等三角形的判定和性质、相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形或全等三角形解决问题,学会构建二次函数解决最值问题,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,在菱形ABCD中,AC、BD交于点O,BP∥AC,CP∥BD.
(1)求证:OP=AD;
(2)不添加任何辅助线的情况下,直接写出图中所有的平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,E为AC上一点,AE=AB,连接DE.
(1)求证:△ABD≌△AED;
(2)已知BD=5,AB=9,求AC长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.若一次函数y=2x+b的图象不经过第二象限,则此函数的解析式可以为y=2x-1(写出一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解方程:$\frac{3}{x-1}$+$\frac{x}{1-x}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.现要把192吨物资从我市运往甲、乙两地,用大、小两种货车共18辆恰好能一次性运完这批物资.已知这两种货车的载重量分别为14吨/辆和8吨/辆,运往甲、乙两地的运费如表:
运往地
车型
甲地(元/辆)乙地(元/辆)
大货车720800
小货车500650
(1)求这两种货车各用多少辆?
(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式;
(3)在(2)的条件下,若运往甲地的物资不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最少总运费.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI与边CD交于点H,折痕为EF,则AE=4$\sqrt{3}$-2时,△EGH为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,将△ABC放在每个小正方形的边长为l的网格中,点A,B,C均落在格点上.
(1)△ABC的面积等于2;
(2)请在如图所示的网格中,用无刻度的直尺,过点A画一条直线,交BC于点D,使△ABD的面积等于△ADC面积的2倍,并简要说明画图的方法(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:$\sqrt{(\sqrt{7}-3)^{2}}$+($\sqrt{7}$-3)0

查看答案和解析>>

同步练习册答案