精英家教网 > 初中数学 > 题目详情

【题目】如图,已知RtABC,∠C90°DBC的中点,以AC为直径的⊙OAB于点E

1)求证:DE是⊙O的切线;

2)若AEEB12BC12,求AE的长.

【答案】(1)详见解析;(2)

【解析】

1)连接OEEC,根据已知条件易证∠1+3=∠2+4=90°,即可得∠OED90°,所以DE是⊙O的切线;(2)证明△BEC∽△BCA,根据相似三角形的性质可得 ,即BC2BEBA,设AEx,则BE2xBA3x,代入可得1222x3x,解得x2,即可得AE2

1)证明:连接OEEC

AC是⊙O的直径,

∴∠AEC=∠BEC90°

DBC的中点,

EDDCBD

∴∠1=∠2

OEOC

∴∠3=∠4

∴∠1+3=∠2+4

即∠OED=∠ACB

∵∠ACB90°

∴∠OED90°

DE是⊙O的切线;

2)由(1)知:∠BEC90°

∵在RtBECRtBCA中,∠B=∠B,∠BEC=∠BCA

∴△BEC∽△BCA

BC2BEBA

AEEB12,设AEx,则BE2xBA3x

BC12

1222x3x

解得:x2

AE2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CDOB于点E,点FAB延长线上一点,CFEF

1)求证:FC是⊙O的切线;

2)若CF5,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市生物和地理会考的考试结果以等级形式呈现,分ABCD四个等级.某校八年级学生参加生物会考后,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.

1)这次抽样调查共抽取了 名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为 °

2)将条形统计图补充完整;

3)若该校八年级有400名学生,估计这次考试有多少名学生的生物成绩等级为D级?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,反比例函数在第一象限内的图象分别交于点和点,且的面积为

1)求直线的解析式;

2)求反比例函数解析式;

3)求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,BD为一条对角线,ADBCAD2BC,∠ABD90°EAD的中点,连接BE

1)求证:四边形BCDE为菱形;

2)连接AC,若AC平分∠BADBC2,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC

1)实践与操作:

利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)

BC边上的高AD

作△ABC的角平分线BE

2)综合与运用;

若△ABC中,ABAC且∠CAB36°,

请根据作图和已知写出符合括号内要求的正确结论;

结论1   ;(关于角)

结论2   ;(关于线段)

结论3   .(关于三角形)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,为射线上一动点,将沿折叠,得到恰好落在射线上,则的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市要进一批鸡蛋进行销售,有两家农场可供货.为了比较两家提供的鸡蛋单个大小,超市分别对这两家农场的鸡蛋进行抽样检测,通过分析数据确定鸡蛋的供货商.

1)下列抽样方式比较合理的是哪一种?请简述原因.

①分别从两家提供的一箱鸡蛋中拿出最上面的两层(共40枚)鸡蛋,并分别称出其中每一个鸡蛋的质量.

②分别从两家提供的一箱鸡蛋中每一层随机抽4枚(共40枚)鸡蛋,并分别称出其中每个鸡蛋的质量.

2)在用合理的方法抽出两家提供的鸡蛋各40枚后,分别称出每个鸡蛋的质量(单位:),结果如表所示(数据包括左端点不包括右端点).

4547

4749

4951

5153

5355

农场鸡蛋

2

8

15

10

5

农场鸡蛋

4

6

12

14

4

①如果从这两家农场提供的鸡蛋中随机拿一个,分别估计两家鸡蛋质量在(单位:)范围内的概率(数据包括左端点不包括右端点);

②如果你是超市经营者,试通过数据分析确定选择哪家农场提供的鸡蛋.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并完成相应的任务.

托勒密定理:

托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为伟大的数学书,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.

托勒密定理:

圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.

已知:如图1,四边形ABCD内接于⊙O

求证:ABCD+BCADACBD

下面是该结论的证明过程:

证明:如图2,作∠BAE=∠CAD,交BD于点E

∴∠ABE=∠ACD

∴△ABE∽△ACD

ABCDACBE

∴∠ACB=∠ADE(依据1

∵∠BAE=∠CAD

∴∠BAE+EAC=∠CAD+EAC

即∠BAC=∠EAD

∴△ABC∽△AED(依据2

ADBCACED

ABCD+ADBCACBE+ED

ABCD+ADBCACBD

任务:(1)上述证明过程中的依据1”依据2”分别是指什么?

2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:   

(请写出)

3)如图3,四边形ABCD内接于⊙OAB3AD5,∠BAD60°,点C的中点,求AC的长.

查看答案和解析>>

同步练习册答案