精英家教网 > 初中数学 > 题目详情
已知:△ABC(如图),

(1)求作:作△ABC的内切圆⊙I.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明).
(2)在题(1)已经作好的图中,若∠BAC=88°,求∠BIC的度数.
(1)作图见解析;(2)134°.

试题分析:(1)分别作出∠BAC、∠ABC的平分线,两平分线的交点即为△ABC的内切圆的圆心I,过点I向BC作垂线,垂足为H,垂足与I之间的距离即为⊙I的半径,以I为圆心,IH为半径画圆即可;
(2)先根据三角形内角和定理求出∠ABC+∠ACB的度数,再根据角平分线的性质得出∠IBC+∠ICB的度数,由三角形内角和定理即可求解.
试题解析:(1)①以A为圆心任意长为半径画圆,分别交AC、AB于点H、G;
②分别以H、G为圆心,以大于HG为半径画圆,两圆相交于K点,连接AK,则AK即为∠BAC的平分线;
③同理作出∠ABC的平分线BF,交AK于点I,则I即为△ABC内切圆的圆心;
④过I作IH⊥BC于H,以I为圆心,IH为半径画,则⊙I即为所求圆.

(2)∵∠BAC=88°,
∴∠ABC+∠ACB=180°-88°=92°,
∴∠IBC+∠ICB=(∠ABC+∠ACB)=×92°=46°,
∴∠BIC=180°-46°=134°.
考点: 三角形的内切圆与内心.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F,

(1)求证:CF=BF;
(2)若CD=12,AC=16,求⊙O的半径和CE的长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O1和⊙O2的半径分别为2cm和5cm,两圆的圆心距是3.5cm,则两圆的位置关系是                

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知扇形的圆心角为30°,面积为2,则扇形的弧长是          

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知AB是⊙O的直径,C、D是⊙O上两点.且∠D=130°.则∠BAC的度数是_________

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O1和⊙O2内切,它们的半径分别为3和1,过O1作⊙O2的切线,切点为A,则O1A的长为___   .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN=         cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB为⊙O的直径,弦CD^AB,垂足为点E,连接OC,若OC=5,AE=2,则CD等于
A.3B.4C.6D.8

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在Rt△ABC中,∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是(  )
A.点P在⊙O内B.点P在⊙O上
C.点P在⊙O外D.无法确定

查看答案和解析>>

同步练习册答案