精英家教网 > 初中数学 > 题目详情

【题目】某公司根据市场计划调整投资策略,对两种产品进行市场调查,收集数据如表:

项目

产品

年固定成本

(单位:万元)

每件成本

(单位:万元)

每件产品销售价

(万元)

每年最多可生产的件数

其中是待定常数,其值是由生产的材料的市场价格决定的,变化范围是,销售产品时需缴纳万元的关税,其中为生产产品的件数,假定所有产品都能在当年售出,设生产两种产品的年利润分别为(万元),写出之间的函数关系式,注明其自变量的取值范围.

【答案】

【解析】

根据题意分别表示出AB两产品的年利润即可.

年销售量为x件,按利润的计算公式,生产AB两产品的年利润y1y2分别为:

y1=10x﹣(20+mx)=(10﹣m)x﹣20,(0≤x≤200),

y2=18x﹣(40+8x) ﹣x2=﹣x2+10x﹣40,(0≤x≤120).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.

(1)求日均销售量p(桶)与销售单价x(元)的函数关系;

(2)若该经营部希望日均获利1350元,那么销售单价是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:abc均为非零实数,且a>b>c,关于x的一元二次方程a≠0)其中一个实数根为2。

(1)填空:4a+2b+c 0,a 0,c 0(填“>”,“<”“=”);

(2)若关于x的一元二次方程a≠0)的两个实数根,满足一个根为另一个根的2倍,我们就称这样的方程为倍根方程,若原方程是倍根方程,则求ac之间的关系

(3)a=1时,设方程的另一根为m(m2),在两根之间(不包含两根)的所有整数的绝对值之和是7,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DABC的边AB上一点,CEAB,DEAC于点F,若FA=FC.

(1)求证:四边形ADCE是平行四边形;

(2)AEEC,EF=EC=1,求四边形ADCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是正方形ABCD内一点,点P到点ABD的距离分别为1,2.△ADP沿点A旋转至ABP,连接PP,并延长APBC相交于点Q.

(1)求证:APP是等腰直角三角形;

(2)BPQ的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业设计了一款工艺品,每件的成本是元,为了合理定价,投放市场进行试销.据市场调查,销售单价是元时,每天的销售量是件,而销售单价每降低元,每天就可多售出件,但要求销售单价不得低于成本.求销售单价为多少元时,每天的销售利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?请完成下列问题:

(1)未降价之前,某商场衬衫的总盈利为    元.

(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利   元,平均每天可售出   件(用含x的代数式进行表示)

(3)请列出方程,求出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).

1)求yx之间的函数表达式;

2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.

查看答案和解析>>

同步练习册答案