精英家教网 > 初中数学 > 题目详情
抛物线y=a(x+2)2+c与x轴交于A、B两点,与y轴负半轴交于点C,已知点A(-1,0),OB=OC.
(1)求此抛物线的解析式;
(2)若点M是抛物线上一个动点,且S△BCM=S△ABC,求点M的坐标;
(3)Q为直线y=-x-4上一点,在此抛物线的对称轴是否存在一点P,使得∠APB=2∠AQB,且这样的Q点有且只有一个?若存在,请求出点P的坐标;若不存在,请说明理由.
(1)由抛物线y=a(x+2)2+c可知,其对称轴为x=-2,
∵点A坐标为(-1,0),
∴点B坐标为(-3,0),
∵OB=OC,
∴C点坐标为(0,-3).
将A(-1,0)、C(0,-3)分别代入解析式得,
a+c=0
4a+c=-3

解得,
a=-1
c=1

则函数解析式为y=-x2-4x-3.

(2)BC:y=-x-3,
∴AM:y=-x-1,
y=-x-1
y=-x2-4x-3

∴M(-2,1),
同理
y=-x-5
y=-x2-4x-3

∴M(
-3+
17
2
-
7+
17
2
)或(-
3+
17
2
17
-7
2
),

(3)设P(-2,m),以P为圆心的圆与直线y=-x-4相切,得
(m+2)2
2
=1+m2
m=2±
6

故P(-2,2+
6
)或(-2,2-
6
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=mx2+(m-3)x-3(m>0)的图象如图所示.
(1)这条抛物线与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=4,⊙M过A、B、C三点,求扇形MAC的面积;
(2)在(1)的条件下,抛物线上是否存在点P,使△PBD(PD垂直于x轴,垂足为D)被直线BC分成面积比为1:2的两部分?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:如图所示,一次函数有y=-2x+3的图象与x轴、y轴分别交于A、C两点,二次函数y=x2+bx+c的图象过点C,且与一次函数在第二象限交于另一点B,若AC:CB=1:2,那么这二次函数的顶点坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=
11
4
时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=x+k图象过点A(1,0),交y轴于点B,C为y轴负半轴上一点,且OB=
1
2
BC,过A,C两点的抛物线交直线AB于点D,且CDx轴.
(1)求这条抛物线的解析式;
(2)直接写出使一次函数值小于二次函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用长20m的篱笆,一面靠墙围成一个长方形的园子,怎么围才能使园子的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量y件之间有如下关系:
x35911
y181462
(1)在直角坐标系中
①根据表中提供的数据描出实数对(x,y)的对应点;
②猜测并确定日销售量y件与日销售单价x元之间的函数关系式,并画出图象.并说明当x≥12时对应图象的实际意义.
(2)设经营此商品的日销售利润(不考虑其他因素)为P元,根据日销售规律:
①试求日销售利润P元与日销售单价x元之间的函数关系式;
②当日销售单价x为多少元时,才能获得最大日销售利润?试问日销售利润P是否存在最小值?若有,试求出,并说明其实际意义;若无,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题背景:
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:s=-x2+
1
2
x
(x>0),利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题:
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题:
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:y=2(x+
1
x
)
(x>0),问题就转化为研究该函数的最大(小)值了.
解决问题:
借鉴我们已有的研究函数的经验,探索函数y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=2(x+
1
x
)
(x>0)的图象:
x1/41/31/21234
y
17
2
20
3
545
20
3
17
2
(2)观察猜想:观察该函数的图象,猜想当x=______时,函数y=2(x+
1
x
)
(x>0)有最______值(填“大”或“小”),是______.
(3)推理论证:问题背景中提到,通过配方可求二次函数s=-x2+
1
2
x
(x>0)的最大值,请你尝试通过配方求函数y=2(x+
1
x
)
(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,x=(
x
)2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=-x+4分别交x轴、y轴于点A、C,过A、C两点的抛物线y=ax2-2ax+c交x轴于另一点B.
(1)求该抛物线的解析式;
(2)若动点Q从点B出发,以每秒2个单位长度沿线段BA方向运动,同时动直线l从x轴出发,以每秒1个单位长度沿y轴方向平行移动,直线l交AC与D,交BC于E,当点Q运动到点A时,两者都停止运动.设运动时间为t秒,△QED的面积为S.
①求S与t的函数关系式:并探究:当t为何值时,S有最大值为多少?
②在点Q及直线l的运动过程中,是否存在△QED为直角三角形?若存在,请求t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案