精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2-kx+k-5
(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;
(2)若此二次函数图象的对称轴为x=1,求它的解析式.
【答案】分析:(1)令y=0,得到方程x2-kx+k-5=0,求出此方程的判别式为=(k-2)2+16,无论k取何实数,(k-2)2+16>0,即可得到答案;
(2)根据抛物线的对称轴x=1,能求出k的值,代入抛物线的解析式即可.
解答:(1)证明:令y=0,则x2-kx+k-5=0,
∵△=k2-4(k-5)=k2-4k+20=(k-2)2+16,
∵(k-2)2≥0,
∴(k-2)2+16>0
∴无论k取何实数,此二次函数的图象与x轴都有两个交点.

(2)解:∵对称轴为x=
∴k=2,
∴解析式为y=x2-2x-3,
答:它的解析式是y=x2-2x-3.
点评:本题主要考查对抛物线与X轴的交点和根的判别式等知识点的理解和掌握,理解二次函数和一元二次方程之间的关系式解此题的关键,此题是一个比较典型的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是(  )
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为(  )
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)试求二次函数的解析式;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案