精英家教网 > 初中数学 > 题目详情
(2010•苏州)如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.

【答案】分析:(1)根据正方形的面积公式可求得点B的坐标,从而求得k值.
(2)先根据正方形的性质求得点F的纵坐标和点E的横坐标,代入反比例函数解析式求得其坐标,利用待定系数法求得直线EF的解析式.
解答:解:(1)∵四边形OABC是面积为4的正方形,
∴OA=OC=2,
∴点B坐标为(2,2),
将x=2,y=2代入反比例解析式得:2=
∴k=2×2=4.

(2)∵正方形MABC′、NA′BC由正方形OABC翻折所得,
∴ON=OM=2AO=4,
∴点E横坐标为4,点F纵坐标为4.
∵点E、F在函数y=的图象上,
∴当x=4时,y=1,即E(4,1),
当y=4时,x=1,即F(1,4).
设直线EF解析式为y=mx+n,将E、F两点坐标代入,

∴m=-1,n=5.
∴直线EF的解析式为y=-x+5.
点评:此题综合考查了反比例函数与一次函数的性质,综合性比较强,注意反比例函数上的点向x轴y轴引垂线形成的矩形面积等于反比例函数的k值.要会熟练地运用待定系数法求函数解析式,这是基本的计算能力.
练习册系列答案
相关习题

科目:初中数学 来源:2011年浙江省温州市永嘉县瓯北镇四校联考九年级(下)第一次月考数学试卷(解析版) 题型:解答题

(2010•苏州)如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:2011年浙江省温州市永嘉县瓯北二中九年级(下)第一次月考数学试卷(解析版) 题型:解答题

(2010•苏州)如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2010•苏州)如图,以A为顶点的抛物线与y轴交于点B、已知A、B两点的坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《一次函数》(06)(解析版) 题型:解答题

(2010•苏州)如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.

查看答案和解析>>

同步练习册答案