精英家教网 > 初中数学 > 题目详情
如图,△ABC的高CF、BG相交于点H,分别延长CF、BG与△ABC的外接圆交于D、E两点,则下列结论:①AD=AE;②AH=AE;③若DE为△ABC的外接圆的直径,则BC=AE.其中正确的是(  )
分析:①△ABC的高CF、BG相交于点H,根据同角的余角相等,即可求得∠ABG=∠ACF,即可得AD=AE;
②首先延长AH交BC于M点,由H是垂心,根据同角的余角相等,即可得∠ACB=∠AHE,则可证得∠AHE=∠AEB,根据等角对等边的性质,即可得AH=AE;
③由①②,易得△AHG≌△AEG,△ADF≌△AHF,又由DE为△ABC的外接圆的直径,易求得∠ADE=∠BAC=45°,则可得BC=AE.
解答:解:①∵CF、BG是△ABC的高,
∴∠AGB=∠AFC=90°,
∴∠BAC+∠ABG=90°,∠BAC+∠ACF=90°,
∴∠ABG=∠ACF,
AD
=
AE

∴AD=AE;
故①正确;
②延长AH交BC于M点,
∵H是垂心,
∴AM⊥BC,
∴在△AMC和△AGH中,∠AHG+∠MAC=90°,∠ACM+∠MAC=90°,
∴∠ACB=∠AHE,
∵∠ACB=∠AEB,
∴∠AHE=∠AEB,
∴AE=AH;
故②正确;
③由①②可知AD=AE=AH,
∴△AHG≌△AEG,△ADF≌△AHF,
∴∠DAF=∠HAF,∠EAG=∠HAG,
∴∠BAC=
1
2
∠DAE,
∵当DE为直径时,∠DAE=90°,
∴∠BAC=45°,
∵在Rt△ADE,AD=AE,
∴∠ADE=45°,
∴AE=BC.
故③正确.
故选D.
点评:此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想的应用,注意辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC的高AD、BE、CF相交于点I,△BIC的BI边上的高是
CE

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,△ABC的高BD、CE相交于点O,且OB=OC,AB与AC相等吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,△ABC的高AD、BE相交于点O,则∠C与∠BOD的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的高AD=4,BC=8,四边形MNPQ是△ABC中任意一个内接矩形
(1)设MN=x,MQ=y,求y关于x的函数解析式;
(2)设MN=x,矩形MNPQ的面积为y,求y关于x的函数关系式,并求出当MN为多大时,矩形MNPQ面积y有最大值,最大值为多少?

查看答案和解析>>

同步练习册答案