精英家教网 > 初中数学 > 题目详情
23、已知:在△ABC中,AD为中线,如图1,将△ADC沿直线AD翻折后点C落在点E处,连接BE和CE.
(1)求证:BE⊥CE;
(2)若AC=DC(如图2),请在图2中画出符合题意的示意图,并判断四边形ADBE是什么四边形?请证明你的结论.
分析:(1)由翻折的性质知△ADC≌△ADE?CD=ED,而点D是BC的中点,则BD=CD=DE,由等边对等角得到∠DCE=∠DEC,∠DBE=∠DEB,且有∠DCE+∠DEC+∠DBE+∠DEB=180°?2∠DEB+2∠CED=180°?∠DEB+∠CED=90°,即BE⊥EC;
(2)易得AEDC是菱形,故AE∥DC,且AE=DC,而点D是BC的中点,有CD=BD,则AE=BD,由一组对边平行且相等可判定四边形ADBE是平行四边形.
解答:证明:∵△ADC沿直线AD翻折后点C落在点E处,
∴△ADC≌△ADE,
∴CD=ED,
∴∠DCE=∠DEC,
∵AD为中线,
∴BD=DC,
∴BD=DE,
∴∠DBE=∠DEB,
∵∠DBE+∠BEC+∠ECB=180°,即2∠DEB+2∠CED=180°,
∴∠DEB+∠CED=90°,
∴BE⊥EC.

(2)解:如图,ADBE是平行四边形.理由如下:
∵△ADC沿直线AD翻折后点C落在点E处,
∴△ADC≌△ADE,
∴AE=AC,DE=DC
∵AC=DC,
∴AE=AC=DE=DC,
∴AEDC是菱形,
∴AE∥DC,且AE=DC
∵AD是中线,∴BD=DC,
∴AE∥BD,且AE=BD
∴ADBE是平行四边形.
点评:本题考查了翻折的性质,对应边相等,对应角相等,对应图形全等及特殊四边形的判定和性质.第(1)小题也可用若三角形一边上的中线等于该边的一边,则三角形是直角三角形来判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案