精英家教网 > 初中数学 > 题目详情
如图,菱形ABCD中,AB=2,∠C=60°,我们把菱形ABCD的对称中心O称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O所经过的路径长为
3
3
π
3
3
π
;经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为
2
3
+1
3
2
3
+1
3
.(结果都保留π)
分析:从图中可以看出,第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60°.第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60°.第三次就是以点B为旋转中心,OB为半径,旋转的圆心角为60度.旋转到此菱形就又回到了原图.故这样旋转3n次,就是这样的n个弧长的总长,依此计算即可得,进而得出经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长.
解答:解:∵菱形ABCD中,AB=2,∠C=60°,
∴△ABD是等边三角形,
BO=DO=1,
AO=
AD2-DO2
=
3

第一次旋转的弧长=
60π×
3
180
=
3
π
3

∵第一、二次旋转的弧长和=
60π×
3
180
+
60π×
3
180
=
2
3
3
π,
第三次旋转的弧长为:
60π×1
180
=
π
3

∵3n÷3=n,
故经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为:n×(
2
3
3
π+
π
3
)=
2
3
+1
3
nπ.
故答案为:
3
3
π
2
3
+1
3
nπ.
点评:本题主要考查了弧长的计算公式以及菱形的性质,根据已知得出菱形每转动3次一循环进而得出经过路径是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.
(1)求证:AE=AF;
(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD中,∠A=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿B→C→D向终点D运动.同时动点Q从点A出发,以相同的速度沿A→D→B向终点B运动,运动的时间为x秒,当点P到达点D时,点P、Q同时停止运动,设△APQ的面积为y,则反映y与x的函数关系的图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若AB长为2
3
,则PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:菱形ABCD中,E是AB的中点,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度数;
(2)对角线BD的长;
(3)菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的长.
(2)求菱形的面积.

查看答案和解析>>

同步练习册答案