分析 (1)根据勾股定理得AB=5,由旋转性质可得∠A′BA=90°,A′B=AB=5.继而得出AA′=5$\sqrt{2}$;
(2)O′C⊥y轴,由旋转是性质可得:∠O′BO=120°,O′B=OB=3,在Rt△O′CB中,由∠O′BC=60°得BC、O′C的长,继而得出答案.
解答 解:(1)∵点A(4,0),点B(0,3),
∴OA=4,OB=3.
在Rt△ABO中,由勾股定理得AB=5.
根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,
由旋转是性质可得:∠A′BA=90°,A′B=AB=5,
∴AA′=5$\sqrt{2}$.
(2)如图,根据题意,由旋转是性质可得:∠O′BO=120°,O′B=OB=3
过点O′作O′C⊥y轴,垂足为C,
则∠O′CB=90°.
在Rt△O′CB中,由∠O′BC=60°,∠BO′C=30°.
∴BC=$\frac{1}{2}$O′B=$\frac{3}{2}$.
由勾股定理O′C=$\frac{3\sqrt{3}}{2}$,
∴OC=OB+BC=$\frac{9}{2}$.
∴点O′的坐标为($\frac{3\sqrt{3}}{2}$,$\frac{9}{2}$).
点评 本题主要考查旋转的性质及勾股定理,熟练掌握旋转的性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com