【题目】如图,抛物线L:y=﹣x2+bx+c经过坐标原点,与它的对称轴直线x=2交于A点.
(1)直接写出抛物线的解析式;
(2)⊙A与x轴相切,交y轴于B、C点,交抛物线L的对称轴于D点,恒过定点的直线y=kx﹣2k+8(k<0)与抛物线L交于M、N点,△AMN的面积等于2,试求:
①弧BC的长;
②k的值.
【答案】(1)y=﹣x2+4x.(2)①;②k=
【解析】
(1)由抛物线的对称轴为直线x=2及抛物线过原点,即可得出关于b,c的方程组,解之即可求出b,c的值,进而可得出抛物线的解析式;
(2)①连接AB,AC,过点A作AE⊥BC于点E,利用配方法可求出点A的坐标,进而可得出⊙A的半径,在Rt△ABE中,由AE=AB可得出∠ABE=30°,进而可得出∠BAE=60°,由AB=AC可得出∠BAC=120°,再利用弧长公式可求出弧BC的长;
②由点A的坐标及⊙A的半径可得出点D的坐标,将x=2代入y=kx﹣2k+8中可得出直线y=kx﹣2k+8过点D,延长NM,交直线x=2于点D,过点A作AF∥x轴,交DM于点F,过点A作AP⊥DM于点P,在Rt△ADF中,利用面积法可求出AP的长度,联立直线MN和抛物线的解析式成方程组,通过解方程组可求出点M,N的坐标,利用两点间的距离公式可求出MN的长度,再利用三角形的面积公式结合△AMN的面积等于2,可得出关于k的方程,解之即可得出结论.
解:(1)依题意,得:,
解得:,
∴抛物线的解析式为y=﹣x2+4x.
(2)①连接AB,AC,过点A作AE⊥BC于点E,如图1所示.
∵y=﹣x2+4x=﹣(x﹣2)2+4,
∴点A的坐为(2,4),
∴AB=AC=4.
在Rt△ABE中,AB=4,AE=2,
∴AE=AB,
∴∠ABE=30°,
∴∠BAE=60°.
∵AB=AC,
∴∠BAE=∠CAE,
∴∠BAC=120°,
∴=×2πAB=π.
②∵点A的坐为(2,4),AD=4,
∴点D的坐标为(2,8).
∵y=kx﹣2k+8=k(x﹣2)+8,
∴当x=2时,y=kx﹣2k+8=8,
∴直线y=kx﹣2k+8过点D.
延长NM,交直线x=2于点D,过点A作AF∥x轴,交DM于点F,过点A作AP⊥DM于点P,如图2所示.
当y=4时,kx﹣2k+8=4,
解得:x=2﹣,
∴点F的坐标为(2﹣,4).
在Rt△ADF中,AD=4,AF=﹣,
∴DF=,
∴AP==.
联立直线MN和抛物线的解析式成方程组,得:,
解得:,,
∴点M的坐标为(,),点N的坐标为(,),
∴MN==,
∴S△AMN=APMN=2,即××=2,
∴k2﹣16=1,
解得:k1=-,k2=(舍去),
∴k的值为-.
科目:初中数学 来源: 题型:
【题目】如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一不明国籍的渔船C,求此时渔船C与海监船B的距离是多少.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农场准备围建一个矩形养鸡场,其中一边靠墙(墙的长度为15米),其余部分用篱笆围成,在墙所对的边留一道1米宽的门,已知篱笆的总长度为23米.
(1)设图中AB(与墙垂直的边)长为x米,则AD的长为 米(请用含x的代数式表示);
(2)若整个鸡场的总面积为y米2,求y的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线分别是中的对边。
(1)求证:该抛物线与轴必有两个交点;
(2)设抛物线与轴的两个交点为,顶点为 ,已知的周长为,求抛物线的解析式;
(3)设直线与抛物线交于点,与轴交于点,抛物线与轴交于点,若抛物线的对称轴为与的面积之比为,试判断三角形的形状,并证明你的结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017浙江省温州市)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数(k≠0)的图象恰好经过点A′,B,则k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.
(1)如图,正方形的边长为4,为的中点,点,分别在边和上,且,线段与交于点,求证:为四边形的相似对角线;
(2)在四边形中,是四边形的相似对角线,,,,求的长;
(3)如图,已知四边形是圆的内接四边形,,,,点是的中点,点是射线上的动点,若是四边形的相似对角线,请直接写出线段的长度(写出3个即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,下面说法正确的个数是( )个.
①若O是△ABC的外心,∠A=50°,则∠BOC=100°;
②若O是△ABC的内心,∠A=50°,则∠BOC=115°;
③若BC=6,AB+AC=10,则△ABC的面积的最大值是12;
④△ABC的面积是12,周长是16,则其内切圆的半径是1.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点P(1,2.5)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积( )
A. 增大B. 先增大后减小
C. 先减小后增大D. 减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B的坐标分别为,,点M是AO中点,的半径为2.
若是直角三角形,则点P的坐标为______直接写出结果
若,则BP与有怎样的位置关系?为什么?
若点E的坐标为,那么上是否存在一点P,使最小,如果存在,求出这个最小值,如果不存在,简要说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com