【题目】已知:点A(4,0),点B是y轴正半轴上一点,如图1,以AB为直角边作等腰直角三角形ABC.
(1)当点B坐标为(0,1)时,求点C的坐标;
(2)如图2,以OB为直角边作等腰直角△OBD,点D在第一象限,连接CD交y轴于点E.在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.
【答案】(1)C(-1,-3)(2)在B点运动过程中,BE长保持不变,值为2
【解析】
试题(1)过C作CM⊥y轴于M,根据已知条件易证△BCM≌△ABO (AAS) ,根据全等三角形的性质可得CM=BO=1,BM=AO=4,所以OM=3,即可得C(-1,-3);(2)在B点运动过程中,BE长保持不变,值为2,过C作CM⊥y轴于M,由(1)可知:△BCM≌△ABO,根据全等三角形的性质可得CM=BO, BM=OA=4;在判定△BCM≌△ABO (AAS) ,即可得BE=EM,从而求得BE的长.
试题解析:
(1)解:过C作CM⊥y轴于M.
∵ CM⊥y轴,∴∠BMC=∠AOB=90°,
∴∠ABO+∠BAO=90°
∵∠ABC=90°,∴∠CBM+∠ABO=90°,
∴∠CBM=∠BAO
在△BCM与△ABO中 ∵
∴△BCM≌△ABO (AAS) ,
∴CM=BO=1,BM=AO=4,
∴OM=3,
∴C(-1,-3)
(2)在B点运动过程中,BE长保持不变,值为2,理由如下:
过C作CM⊥y轴于M,由(1)可知:△BCM≌△ABO,
∴CM=BO,BM=OA=4.
∵ △BDO是等腰直角三角形,
∴BO=BD, ∠DBO=90°,
∴CM=BD, ∠DBE=∠CME=90°,
在△DBE与△CME中,∵
∴△DBE≌△CME(AAS)
∴BE=EM
∴BE=
科目:初中数学 来源: 题型:
【题目】一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)
(1)求点A、C分别对应的数;
(2)经过t秒后,求点P、Q分别对应的数(用含t的式子表示)
(3)试问当t为何值时,OP=OQ?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:
①玩家只能将小兔从A、B两个出入口放入;
②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.
(1)问小美得到小兔玩具的机会有多大?
(2)假设有100人次玩此游戏,估计游戏设计者可赚多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一组连续奇数按如图方式排列,请你解决下列问题:
第行最后一个数字是___________,在第行第列的数字是_______________
请用含的代数式表示第行的第个数字和最后一个数字;
现用一个正方形框去围出相邻两行中的个数字(例如:第行和第行的),请问能否在第行和第行中求出个数字的和是?若能,请求出这个数字;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在半径为R的⊙O中,和度数分别为36°和108°,弦CD与弦AB长度的差为(用含有R的代数式表示).
A. R B. C. 2R D. 3R
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段和线段.
(1)按要求作图(保留作围痕迹,不写作法);
延长线段至点,使,反向延长线段至点,使;
(2)如果,分别是线段,的中点,且, ,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com